活动预告丨CodeWisdom可信AI系列学术报告:第9期(杜晓宁, Monash University)

杜晓宁博士的报告探讨了代码大模型的计算效率问题,提出在推理阶段提升资源利用和效率的方法,以降低大模型的计算开销和环境代价,支持其商业化应用.

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

bc265d1faf17d42a101af7e1b7f304a2.png

杜晓宁

02fef98a9cc02ad720a0e3ff92263c19.png

内容简介

63bf1563fc9b11ca5d2baf29be2c4bfc.png

题目

更加绿色高效的代码生成范式初探

摘要

代码大模型在代码生成,代码补全等任务上展现出空前的卓越表现。这很大程度上得益于模型巨大的参数量。大参数量也意味着更高的计算开销,成本投入,以及环境代价。本次报告将关注模型部署后,推理阶段的计算资源浪费问题,并提出可用于推理前及推理中的提升资源利用率和推理效率的策略,旨在减少计算开销,避免不必要的资源浪费,更好地推进代码大模型的商业化与落地。

报告

bb76fc1d81544ec562eb2561d64a9def.png

杜晓宁博士目前在莫纳什大学信息技术学院(Faculty of Information Technology,Monash University)担任助理教授。她于2020年从南洋理工大学获得博士学位,2014年从复旦大学获得学士学位。她的研究主要集中智能软件以及智能软件开发工具的质量以及落地过程中面临的困难,如鲁棒性,可解释性,数据集质量问题,版权问题,以及模型效率问题等。她的研究成果发表在顶级会议和期刊上,包括ICSE、ASE、FSE、NeurIPS、AAAI、S&P、USENIX Security和TDSC。其中一项关于评估并提高代码搜索数据集质量的工作发表在ICSE 2021并荣获ACM SIGSOFT杰出论文奖提名。

285ff833d7dc43d1223c63e73733de5c.png

时间安排

0511cfa7d3eb1591bf50373dd50f0f34.png

时间:2023年12月19日

         上午10:00

线下地点:复旦大学江湾校区二号交叉学科楼A2003

175a30a430b14c3bdceef6f2ceaa1c79.png

95f81b2f62531050462ff235f2d9b282.png

4c44f4b0f8aaa3a77007048ec847a8d4.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值