Flink入门第十八课:DataStream的数据结构以及Flink的连接操作

本文介绍了Flink中DataStream、KeyedStream、WindowedStream等核心数据结构,详细讲解了join、coGroup和intervalJoin等操作,以及ConnectedStreams和CoGroupedStreams的区别。重点阐述了如何处理并行流、窗口操作和跨窗口数据连接的场景。

1、DataStream
    代表一个运行在多个分区上的并行流,转换操作都是逐条的。
    可以从 StreamExecutionEnvironment 或者env.addSource(SourceFunction) 获得。
    常用操作:map(),flatMap(),filter()、rebalance()、 broadcaseted()

2、KeyedStream
    用来表示根据指定的key进行分组的数据流,执行任何转换操作都将返回DataStream。
    可以通过调用DataStream.keyBy()来获得。
    常用操作:reduce()、fold()、sum()、max()

3、WindowedStream
    代表了根据key分组,并且基于WindowAssigner切分窗口的数据流。
    执行任何转换操作都将返回DataStream。
    可以通过KeyedStream.window()来获得。
    常用操作:reduce()、fold()、sum()、max()

4、AllWindowedStream
    代表了在DataStream上,并且基于WindowAssigner切分窗口的数据流。
    执行任何转换操作都将返回DataStream。
    可以通过DataStream.windowAll()来获得。会导致所有分区数据汇集到一个task上。
    常用操作:reduce()、fold()、sum()、max()

5、ConnectedStreams
    代表了根据两个流合并的组合流,组合流回包含两个流中的数据。
    ConnectedStreams可以对两个不同流应用不同的处理方法,两个流之间还可以共享状态。
    可以通过DataStream.connect(ds1) 来获得。
    union连接的是多个相同类型的流,返回DataStream。connect连接的是两个流,类型可以不一致,返回
ConnectedStreams。

6、CoGroupedStreams
    代表了对同一个Key上的两组流的全部数据在同一窗口内进行join操作。如果涉及到和上一条数据交互的操
作,只能用coGroup。
    可以通过DataStream.coGroup()来获得。
    常用操作:
    ds1.coGroup(ds2).where(ds1.id).equalTo(ds2.id)
    .window(TumblingProcessingTimeWindows.of(Time.minutes(1)))
    .trigger(trigger)     ---触发执行,可以不写
    .evictor(evictor)     ---可以不写
    .apply(new CoGroupFunction(ds1,ds2,key的类型){ 重写coGroup函数})  
    Flink得DataStream只提供了inner join形式,如果要实现left/right join,可以在apply方法中重写coGroup函数。

7、JoinedStreams
    代表了对双流的同一个Key上的每对(笛卡儿积的每一行)数据在同一窗口内进行join操作。
    是CoGroupedStreams的特例。JoinedStreams和CoGroupedStreams重写的coGroup函数是不一样的。
    可以通过DataStream.join()来获得。
    常用操作:
    ds1.join(ds2).where(ds1.id).equalTo(ds2.id)
    .window(TumblingProcessingTimeWindows.of(Time.minutes(1)))
    .trigger(trigger)     ---触发执行,可以不写
    .evictor(evictor)    ---可以不写
    .apply(new FlatJoinCoGroupFunction(ds1,ds2,key的类型){ 重写coGroup函数}) 

以上是flink常见的几种数据结构,最后两类joinedStreams和CoGroupedStreams是通过DataStream的join操作得到的,而这种join只能对同一窗口内的数据进行join,如果数据延迟了呢?这就需要使用基于
KeyedStream的intervalJoin操作。

8、intervalJoin
    如果要join的数据跨窗口,那么就必须使用intervalJoin来连接两个带事件时间watermark的KeyedStream。
    常用操作:
    DataStream result = ds1
    .keyBy(id)
    .intervalJoin(ds2.keyBy(id))
    .between(Time.seconds(-2), Time.seconds(1))  --相同key数据,ds1当前时间的数据和ds2[-2,1]时间内数据进行连接操作
    .process(new ProcessJoinFunction(ds1,ds2,key的类型){重写processElement函数})



参考文章:
Flink 原理与实现:数据流上的类型和操作
http://wuchong.me/blog/2016/05/20/flink-internals-streams-and-operations-on-streams/

FLINK DATASTREAM中COGROUP实现原理与三种 JOIN 实现
https://www.freesion.com/article/2617540446/

Flink - CoGroup
https://www.cnblogs.com/fxjwind/p/7216981.html

Flink DataStream 如何实现双流Join
https://copyfuture.com/blogs-details/20210506121130019c

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

二百四十九先森

你的打赏是我努力的最大动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值