Minimum Path Sum

[leetcode]Minimum Path Sum

链接:https://leetcode.com/problems/minimum-path-sum/description/

Question

Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.

Note: You can only move either down or right at any point in time.

Example 1

Input:
[
  [1,3,1],
  [1,5,1],
  [4,2,1]
]
Output: 7
Explanation: Because the path 13111 minimizes the sum.

Solution

class Solution {
public:
  int minPathSum(vector<vector<int>>& grid) {
    int row = grid.size();
    int col = grid[0].size();
    std::vector<std::vector<int> > dp;
    dp.resize(row+1, std::vector<int>());
    for (int i = 0; i <= row; i++) dp[i].resize(col+1, 0);
    for (int i = 1; i <= row; i++) dp[i][1] = dp[i-1][1]+grid[i-1][1-1];
    for (int i = 1; i <= col; i++) dp[1][i] = dp[1][i-1]+grid[1-1][i-1];

    for (int i = 2; i <= row; i++) {
      for (int j = 2; j <= col; j++) {
        dp[i][j] = min(dp[i-1][j], dp[i][j-1])+grid[i-1][j-1];
      }
    }
    return dp[row][col];
  }
};

思路:常规动态规划~dp[i][j]表示从起点开始到(i,j)所需要的最小总和是多少。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值