预测算法模型系列(八)

本文介绍了在机器学习预测中如何通过将样本数据分为训练集和验证集,利用ROC曲线评估模型性能,特别是通过改变判断条件生成多组验证数据,计算TPR和FPR,最终聚焦于AUC(曲线下面积)这一重要指标。作者详细解释了AUC的计算方法,包括排序计算示例和两种常见计算公式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 算法验证评估

我们在做预测的时候都是把样本数据分成几个数据集,一个用来训练模型,另外一个或者两个用来验证模型,也就是验证这个最优权重是否可靠。

ROC曲线

算法好做,但是验证比较麻烦。我们准备好的一组样本数据并不是计算一次就ok了,我们需要反复计算,来得到ROC曲线,用验证数据集的所有数据计算一次就是ROC曲线上的一个点,如果我们想要一个有100个点组成的曲线,那么就要计算100次。

这里有一个关键点,就是每次计算都要修改一下判断条件。

啥判断?啥条件?

我们用验证数据和最优权重计算后得到了每组预测结果[y1, y2, y3 ...],那别忘了这些预测结果都是0和1之间的数,我们要把他们归类成0或者1,对吧,归类就需要一个判断条件吧,大于等于一个数归类成1,小于这个数归类成0。如果每次验证都用同一个数,那出来的100个点数据都一样,ROC就是个直线。这不是我们想要的,所以要每次训练都改变一个数,我们可以使用【0、0.01、0.02、0.03 ....... 0.98、0.99、 1】这101个数进行验证,这样每次验证的准确率就会有变化,我们就有参考啦。如下图就是一组经过51次验证的ROC曲线图

什么是TPR什么是FPR呢?

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值