当我们处在一个舒服的领域时,我们就很难做出有重大意义的事;General George S. Patton曾说过的话:‘今日大力执行一个好的计划远比明日执行一个完美的计划要好的多...



The simultaneous localization and mapping (SLAM) problem has been intensively studied in the robotics community in the past. Different techniques have been proposed but only a few of them are available as implementations to the community. The goal of is to provide a platform for SLAM researchers which gives them the possibility to publish their algorithms. provides to every interested SLAM researcher a subversion (svn) repository and a small webpage in order to publish and promote their work. In the repository, only the authors have full access to the files; other users are restricted to read-only access. does not really aim to provide a repository for the daily development process of early SLAM implementations. Published algorithm should have a certain degree of robustness. does not force the authors to give away the copyright for their code. We only require that the algorithms are provided as source code and that the authors allow the users to use and modify the source code for their own research. Any commercial application, redistribution, etc has to be arranged between users and authors individually. 


RGB-D SLAM Dataset and Benchmark

Contact: Jürgen Sturm

We provide a large dataset containing RGB-D data and ground-truth data with the goal to establish a novel benchmark for the evaluation of visual odometry and visual SLAM systems. Our dataset contains the color and depth images of a Microsoft Kinect sensor along the ground-truth trajectory of the sensor. The data was recorded at full frame rate (30 Hz) and sensor resolution (640×480). The ground-truth trajectory was obtained from a high-accuracy motion-capture system with eight high-speed tracking cameras (100 Hz). Further, we provide the accelerometer data from the Kinect. Finally, we propose an evaluation criterion for measuring the quality of the estimated camera trajectory of visual SLAM systems.


Monocular SLAM

The research in monocular SLAM technology is mainly based on the EKF(Extended Kalman Filter) SLAM approaches.


Computer Vision Algorithm Implementations

the mobile robot programming toolkit非常好的东西

6 自己研究方向的andrew j. Davsion 

上一篇wind7 下面组建共享宽带上网局域网 利用wifi热点
想对作者说点什么? 我来说一句