关于二维情况下另类切蛋糕问题的思路

本文探讨了一种二维切蛋糕问题,其中刀痕必须经过圆周上的特定点。随着点的数量增加,最大分割区域数呈现出有趣的规律。通过欧拉示性数公式(V-E+F=2)和图论概念,解析了如何计算切痕交点和边的数量,揭示了切分区域数目的计算方法。
摘要由CSDN通过智能技术生成

参考源:3Blue1Brown:【官方中配】分圆问题,诡异的数列规律:解答篇

这个情况下,我们不再考虑切几刀,而是圆周上有n个点,每一刀的刀痕都必须通过圆周上这n个点中的两个点的情况。求最大分割数。
这个问题有一个非常有趣又诡异的答案
当只有1个点的时候,最多只能有 1 1 个区域
当有2个点的时候,最多可以分成 2 个区域
当有3个点的时候,最多可以分成 4 4 个区域
当有4个点的时候,最多可以分成 8 个区域
当有5个点的时候,最多可以分成 16 16 个区域
似乎是非常简单的规律,然而:
当有6个点的时候,最多只能分成 31 31 个区域了,差一个就满足 2n1 2 n − 1 的规律了,但已经不太对了
当有7个点的时候,最多只能分成 57 57 个区域了,差的有点多
当有8个点的时候,最多是 99 99 个区域
当有9个点的时候,最多是 163 163 个区域了
然而,后面又出现一个巧合,
当有10个点的时候,最多是 256 256 个区域了,虽然不是 29=512 2 9 = 512 ,但是 2 2 的幂再次出现

解题主要的思路是根据欧拉示性数公式(Euler’s Characteristic Formula):V-E+F=2
解释一下这个公式,这是指在联通的平面图(Planar graph)上,顶点的个数-边的调数+平面区域的个数=2
举个例子:
下图中有5个顶点,8条边,5个平面区域(其中第五个区域是环绕1234区域的无限大平面)
这里写图片描述
欧拉公式的证明这里不给出

因为切蛋糕问题也可以变成一个平面图问题,我们为了得到蛋糕可以分成的块数,即F,只剩下了两步:

  1. 求出平面图中顶点的个数
    我们需要判断是否有多条切痕交于一个点的情况,但如果多条切痕交于圆内同一点,其实会导致能够产生的平面区域数量减少,举一个简单的例子如下:第一张图中心区域由于三切痕交于圆内一点,相比第二张图少了一个区域。
    这里写图片描述
    这里写图片描述
    那么,我们就从任意三条切痕都不交于圆内同一点的情况进行讨论
    观察下面这张图,我们发现,任意一个交点(橙色箭头)对应圆周上的四个点(红色剪头),换而言之,对于边上有n个点的情况而言,图中将会有 C n 4 个交点,此外还有 n n 个交点是本身存在的,所以图中的总顶点数表示为:
    V = C n 4 + n

    这里写图片描述

    • 求出平面图中边的个数
      如果仅仅将切痕和圆周看作边,原本就存在的顶点看作图的顶点的话,图中的边其实是相交了的,这就不能算是平面图了。所以我们将这些刀痕的交点也算作是图的顶点。我们就得到了一张平面图。
      如何计算边的条数呢?
      在图论中,有一个度(degree)的概念,对于无向图来说(这篇博文中的内容都是无向图),一个顶点的度数定义为与该顶点相连的边的条数。由于任意三条刀痕都不交于圆内的同一点,所以圆内的所有交点由且仅由两条切痕构成,所以这些点的度数是4,而圆周上的n个点中,由于每个点都会与其他n-1个点相连,而与最近的两个点会连接两条边(一条是切痕,另一条是圆周),所以每个点的度数都是n+1
      所以图中的总度数表示为
      Degree=4C4n+n(n+1) D e g r e e = 4 ∗ C n 4 + n ( n + 1 )
    • 度数跟边的关系非常简单,由于在无向图中,每条边都会给两个顶点各贡献一个度,所以无向图中边数就等于总度数的一半

      E
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值