本文转自微信公众号“瀚高数据库售前团队”文章
https://mp.weixin.qq.com/s/8tTkfMI_1K7DdeXmiKbdiA
01 GIS 定义
GIS是对地理空间信息进行采集、存储、管理、处理、显示、分析与模拟,并基于地理空间信息对政府、企业的业务数据以及个人生活所需的各种信息进行管理、分析和辅助决策的计算机信息系统。地理空间信息形式多样,包括矢量电子地图、卫星图像、航空影像、卫星定位数据等。
02 主流空间数据的实现架构
在对空间数据的支持当中,采用“关系型数据库+空间数据引擎”的方式,是目前主流空间数据库的实现架构,以关系型数据库作为存放空间数据的容器,空间数据引擎作为空间数据进出该容器的转换通道,由空间数据引擎来组织空间数据在关系型数据库中的存储和计算,当用户需要访问数据的时候,再通知空间数据引擎,由引擎从关系型数据库中取出数据,并转化为客户可以使用的方式。
03 HGDB在GIS中的支撑作用
在现代地理信息系统的架构中,以空间数据库为基础,采用地理模型分析方案,提供多种空间和动态的地理信息,为地理研究和地理决策服务提供支撑。关系型数据库在GIS架构中,可以同时存储空间数据和属性数据,以面向对象和关系型数据库理论结合的方式对数据进行管理。
HGDB可以提供海量数据的存储和计算能力,同时具备大量空间数据函数和索引来为各类GIS桌面端、服务端以及业务系统提供空间数据的支撑。
(HGDB在GIS架构中的位置)
HGDB延续了PostgreSQL的强大扩展能力,以插件扩展的方式实现空间数据引擎的接入。基于PostGIS扩展在数据库中添加了几何、地理、栅格等空间类型的数据类型;同时也添加了适用于这些空间类型的函数、运算符和索引等增强功能,这些函数、运算符、索引增强了空间数据库管理能力,使HGDB成为一个快速、功能丰富且强大的空间数据库管理系统。
04 HGDB对空间数据的支撑能力
HGDB可以支持所有的空间数据类型,这些类型包括:
点(POINT)、线(LINESTRING)、多边形(POLYGON)、多点(MULTIPOINT)、多线(MULTILINESTRING)、多边形(MULTIPOLYGON)和集合对象集(GEOMETRYCOLLECTION)等。搭配大量的空间计算函数,可以满足几乎所有场景对于空间数据使用的要求。
4.1 常用功能
矢量和栅格数据的处理和分析功能,用于拼接、切块、变形、重分类以及利用SQL进行收集/合并。
使用SQL函数对矢量和栅格数据进行空间重投影操作。
支持通过命令行或GUI工具导入/导出文件矢量数据,使用其他第三方工具可以支持更多格式。
使用命令行导入从多种格式的栅格数据,如:GeoTiff、NetCDF、PNG、JPG等。
支持3D对象、空间索引等功能。
网络拓扑支持。
4.2 兼容PostgreSQL扩展
4.2.1 PostGIS
GIS的核心基本模块,瀚高数据库得以实现对点、线、面、多点、多线、多面等矢量数据库的存储。
postgis_raster:
用于处理和管理栅格数据。栅格数据是由像素组成的网格,通常用于表示遥感图像、地形模型、地图等。PostGIS 栅格扩展允许您将栅格数据与矢量数据(例如点、线、多边形)结合在一起,以进行更复杂的地理信息系统 (GIS) 分析。
postgis_topology:
PostGIS拓扑类型和功能用于管理拓扑对象,如面、边和节点,同时可以支持更复杂的类型,如:
getfaceedges_returnttype一个由序列号和边号组成的复合类型;TopoGeometry表示拓扑定义的几何图形的复合类型;validatepology_returntype 一个复合类型,由错误消息和表示错误位置的id1和id2组成。
postgis_tiger_geocoder:
TIGER指的是(拓扑集成地理编码和参考),可以提供全国的行政区划、交通道路、水系等空间数据,这个Extension提供了TIGER数据的地理编码支持。
4.2.2 pgrouting
瀚高数据库实现了pgrouting兼容,以丰富自身的地理空间信息数据库,以提供地理空间路由功能。同时可以基于Dijkstra算法、约翰逊算法(Johnson’s Algorithm)、弗洛伊德-沃沙尔算法(Floyd-Warshall Algorithm)等,以更好地支撑在路网模型等场景中的实际应用。同时pgrouting以用于查找两个地理位置之间的最短路径、最佳路径、多路径等,利用其提供的最短路径算法和与PostGIS的结合,进行轨迹数据的分析、查询和可视化,可以用于轨迹模型数据的分析和路由。
4.2.3 pgpointcloud
PostgreSQL数据库的一个扩展,用于处理和存储点云数据。点云模型通常是使用Point Cloud(点云)数据来生成和支持高精度地图、倾斜摄影以及实景三维相关行业应用。点云数据可以通过激光扫描、立体摄影等技术采集得到,它包含了大量的离散点,每个点都有坐标信息和可能的其他属性。
05 瀚高数据库GIS支撑优点
瀚高数据库紧跟PostGIS国际社区版本,保持在空间数据支持能力方面的先进水平,具备关系型数据库的基础功能、空间数据存储能力、空间索引能力及大量空间函数能力,为用户在空间数据的存储、计算和管理等提供优质的支持。同时,瀚高在数据库运维管理工具上的研发更为精进,赋能更卓越的空间数据管理能力,同时在PostGIS社区研究上投入更多努力,使得对PostGIS的理解更加深入。
(1)更好的GIS数据运维管理工具支持
应用开发人员和数据库管理人员在面对庞大、复杂的数据库数据时,常常需要借助数据库运维管理工具的辅助来进行高效率的数据操作和维护工作。在这个过程中,一个功能强大且操作简便的数据库运维管理工具起到了至关重要的作用。为了使使用者能够更加方便快捷地对于空间数据的正确性、可用性进行验证,瀚高数据库运维管理工具集成了GIS桌面端工具和WebGIS的一些核心能力,从而提供了更为高效、实用的数据库运维管理服务。
具体包括以下内容:
空间数据可视化:对空间数据进行直观的展示和分析,增强了数据的视觉冲击力和交互性,使得用户在操作过程中能够更快地把握数据的重点和要点。
可视化坐标系修改:用户可以实现对空间数据坐标系统的快速定义,提高数据管理的精度和便捷性。
自定义底图:用户可以根据需求定制符合特定场景的底图,从而更好地满足不同业务场景下的数据展示需求。
导出为图片:用户可以将数据库中的空间数据要素展示并导出为图片格式,方便进行离线查询和分析。
空间数据查询:用户可以通过关键字或特定条件对空间数据进行快速检索和查询,提高数据查询的效率。
距离、面积量算:进行简单的空间数据的距离和面积信息量算,用户可以对数据进行快速校验和分析。
空间数据要素编辑:可视化的对空间数据中的要素进行编辑和修改,实现数据的实时更新和调整,满足不断变化的业务需求。
三维几何数据可视化展示:更直观地展示三维几何数据,提供三维数据的解析和绘制能力,通过浏览器打开管理工具提供的链接,进行三维数据的可视化。
缓冲区分析:这一功能使得用户可以对空间数据进行高效的缓冲区分析,从而快速定位数据中的关键区域,为用户提供分析支持。
(图 矢量数据支持)
(图 栅格数据支持)
(图 空间关系及量算)
(2)更多的PostGIS技术理解和社区贡献
应对空间信息领域应用的多样化及数据量的迅速增长,瀚高正全力投入空间数据计算引擎和数据库服务执行引擎的优化项目,致力于为空间信息领域的数字化升级注入新动能。通过PostGIS扩展插件的升级,我们深知深入理解PostGIS的很多技术特性。
在深入探索PostGIS的过程中,瀚高秉持开源精神,积极参与PostGIS国际开源社区的讨论,并为PostGIS提供中文翻译,贯彻“看得懂才会用得好”的原则,目前进度已达到100%的翻译覆盖。相比之下,其他PG系厂商大多停留在封装和使用阶段,而瀚高已经开展了大量深度研究和优化工作。
(图 PostGIS国际社区)
本期分享先到这里~感谢观看。