基础集合论 第一章 5 偶集

本文介绍了基础集合论中的偶集概念,基于偶集公理阐述了偶集的定义,即对于任意两个元素a和b,存在一个集合A,其中的元素仅是a或b,这种集合称为无序偶。同时,定义了单集,即仅包含一个元素a的集合。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

偶集公理

a,b,A,x(xAx=ax=b)

定义: 记 {a,b}={xx=ax=b}, 并称之为以 a,b 为元素的偶集。偶集又被称为无序偶。

定义: 记 {a}={a,a}, 并称之为以 a 为元素的单集。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值