phsruanjian
码龄13年
关注
提问 私信
  • 博客:98,781
    问答:2,176
    100,957
    总访问量
  • 68
    原创
  • 88,366
    排名
  • 705
    粉丝
  • 0
    铁粉
  • 学习成就

个人简介:从事IT技术十几年了,十几年经验很多吗。眨眼我也有了。就不知道是不是原地踏步了十几年。

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:新加坡
  • 加入CSDN时间: 2011-06-13
查看详细资料
  • 原力等级
    成就
    当前等级
    4
    当前总分
    564
    当月
    5
个人成就
  • 获得835次点赞
  • 内容获得28次评论
  • 获得671次收藏
  • 代码片获得538次分享
创作历程
  • 67篇
    2024年
  • 1篇
    2022年
  • 1篇
    2021年
成就勋章
TA的专栏
  • Stable Diffusion
    18篇
  • Python学习之旅
    39篇
  • 生活与情感
    2篇
  • JAVA
    3篇
  • IDEA
    3篇
  • SSL
    1篇
  • 服务器实施
    1篇
  • 开发技术
    4篇
兴趣领域 设置
  • 编程语言
    java
  • 大数据
    大数据
  • 后端
    架构
  • 人工智能
    机器学习人工智能深度学习神经网络自然语言处理
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

掌握机器学习:探索Python中常见的机器学习库及其应用

在本博客中,我们介绍了Python中的几个流行机器学习库,并详细探讨了scikit-learn和TensorFlow的使用方法。通过这些库,我们可以快速构建机器学习模型,从简单的分类器到复杂的神经网络。随着机器学习技术的不断发展,这些库也在不断更新和完善,为数据科学家和机器学习工程师提供了强大的工具
原创
发布博客 2024.05.14 ·
534 阅读 ·
4 点赞 ·
0 评论 ·
3 收藏

数据可视化的艺术:使用Matplotlib和Seaborn揭示数据故事

数据可视化是数据分析中的关键一环,它帮助我们理解数据模式、趋势和异常。在Python中,Matplotlib和Seaborn是两个流行的数据可视化库,它们提供了丰富的图表和图形选项,使数据的可视化变得简单而强大。
原创
发布博客 2024.05.14 ·
833 阅读 ·
9 点赞 ·
0 评论 ·
12 收藏

数据分析的核心工具:NumPy和Pandas的实用指南

NumPy和Pandas是Python数据分析不可或缺的工具。NumPy的多维数组功能为数据向量化操作提供了基础,而Pandas则在此基础上提供了丰富的数据分析功能。通过结合使用这两个库,我们可以高效地处理和分析各种复杂的数据集。
原创
发布博客 2024.05.14 ·
785 阅读 ·
8 点赞 ·
0 评论 ·
10 收藏

机器学习在数据分析中的应用:探索未来趋势

数据分析是机器学习应用最广泛和最成熟的领域之一。随着大数据时代的到来,企业和组织正越来越多地利用机器学习技术来从海量数据中提取有价值的洞察。在本博客中,我们将探讨机器学习在数据分析中的几个关键方向、场景和应用实例。
原创
发布博客 2024.05.14 ·
620 阅读 ·
4 点赞 ·
0 评论 ·
6 收藏

终极大招:AI生成内容(AIGC):构建对话系统的原理与实践

人工智能生成内容(AIGC)是当前人工智能领域的一个热门话题,它涉及到使用机器学习模型来生成类似于人类创造的内容。在自然语言处理(NLP)的背景下,AIGC可以用于生成文章、故事、对话等。在本博客中,我们将探索如何构建一个简单的对话系统,它能够模拟两个角色之间的对话。
原创
发布博客 2024.05.13 ·
698 阅读 ·
22 点赞 ·
0 评论 ·
1 收藏

放大招:NLP-探索深度学习在自然语言处理中的应用:构建标题生成器

在深度学习的领域中,自然语言处理(NLP)是一个令人兴奋且快速发展的分支。它使得机器能够理解、解释和生成人类语言。在本博客中,我们将通过构建一个简单的标题生成器来探索NLP的基础知识,了解如何使用深度学习模型处理序列数据。
原创
发布博客 2024.05.13 ·
459 阅读 ·
5 点赞 ·
0 评论 ·
4 收藏

深度学习实战:定制化智能狗门的迁移学习之旅

在深度学习领域,迁移学习是一种强大的技术,它允许我们利用预训练模型的知识来解决新的问题。在本博客中,我们将通过一个有趣的项目——为前美国总统奥巴马的宠物狗Bo定制智能狗门——来探索迁移学习的实际应用。
原创
发布博客 2024.05.12 ·
634 阅读 ·
11 点赞 ·
0 评论 ·
4 收藏

利用预训练模型和迁移学习打造智能狗门

通过使用预训练的VGG16模型和迁移学习,我们能够快速创建一个智能狗门系统。这种方法不仅节省了训练时间,还提高了模型的性能。随着深度学习社区的不断发展,预训练模型和迁移学习将在未来的机器学习项目中扮演越来越重要的角色。
原创
发布博客 2024.05.12 ·
480 阅读 ·
5 点赞 ·
0 评论 ·
7 收藏

数据增强:利用图像变换提升深度学习模型性能-原理与案例

在深度学习中,尤其是图像识别任务,数据增强是一种提升模型泛化能力的有效手段。通过将原始图像进行一系列变换,我们可以生成更多的训练样本,而无需额外的标注工作。在本博客中,我们将结合美国手语(ASL)数据集,展示如何利用数据增强技术来提升模型性能。
原创
发布博客 2024.05.08 ·
657 阅读 ·
18 点赞 ·
0 评论 ·
6 收藏

数据增强:利用图像变换提升深度学习模型性能-原理与案例,data资源ASL数据集

发布资源 2024.05.08 ·
rar

数据增强:提升模型泛化能力的秘诀

数据增强是一种简单而强大的技术,可以显著提高深度学习模型在有限数据集上的性能。在本博客中,我们学习了如何对ASL数据集应用数据增强,并观察到了其对模型性能的积极影响。在未来的博客中,我们将继续探索更多的深度学习技术和应用
原创
发布博客 2024.05.08 ·
440 阅读 ·
3 点赞 ·
0 评论 ·
5 收藏

提升图像识别性能:探索卷积神经网络与美国手语数据集

CNN是一种深度学习模型,它特别适合处理图像数据。通过使用卷积层来提取图像特征,CNN能够捕捉到图像的层次性信息,从而在图像分类任务中表现出色。本文将介绍如何利用CNN的强大能力,对更加复杂的美国手语(ASL)数据集进行图像分类。
原创
发布博客 2024.05.07 ·
479 阅读 ·
8 点赞 ·
0 评论 ·
1 收藏

深入图像分类:使用美国手语数据集训练定制化神经网络

我们探讨了如何使用MNIST数据集训练一个基础的神经网络来进行手写数字识别。在本文中,我们将更进一步,使用美国手语字母表(ASL)数据集来构建一个定制化的图像分类模型。通过这个过程,你将学习到如何准备数据、构建模型、以及对模型进行训练和评估。
原创
发布博客 2024.05.02 ·
1409 阅读 ·
14 点赞 ·
1 评论 ·
9 收藏

图像识别的突破:使用MNIST数据集训练你的首个深度学习模型

在深度学习的世界里,MNIST数据集相当于是“Hello World”程序。它包含了大量的手写数字图像,是初学者学习图像识别和训练神经网络的理想起点。在这篇博客中,我们将结合NVIDIA深度学习DLI基础课程的内容,学习如何使用MNIST数据集来训练我们的第一个深度学习模型。
原创
发布博客 2024.05.02 ·
517 阅读 ·
12 点赞 ·
0 评论 ·
2 收藏

启程Python机器学习之旅:从JupyterLab到神经网络初探

JupyterLab是一个基于Web的交互式开发环境,它允许我们撰写和运行代码,并将文本、方程式、图像和视频等内容整合在一起。通过JupyterLab,我们可以轻松地探索数据、开发机器学习模型,并以一种有组织的方式展示我们的工作。
原创
发布博客 2024.05.02 ·
544 阅读 ·
3 点赞 ·
0 评论 ·
5 收藏

Python学习之旅预告:深入机器学习的奇妙世界 —— 从基础到前沿

对未来几篇博客做一个预告,开始探讨深度学习领域。
原创
发布博客 2024.04.28 ·
986 阅读 ·
12 点赞 ·
2 评论 ·
2 收藏

#Python构建学生信息管理系统:项目回顾与总结

本系列博客中,我们详细探讨了构建学生信息管理系统(SIMS)的全过程,从需求分析到最终的前端页面开发
原创
发布博客 2024.04.28 ·
494 阅读 ·
5 点赞 ·
1 评论 ·
5 收藏

Python构建学生信息管理系统

发布资源 2024.04.28 ·
rar

Python构建学生信息管理系统:前端页面开发

在本系列博客的前几篇中,我们详细介绍了学生信息管理系统(SIMS)的需求分析、环境搭建、工程初始化、数据库设计、后端逻辑以及安全设计。在本文中,我们将专注于前端页面的开发,包括学生信息的展示、搜索以及增删改操作。
原创
发布博客 2024.04.27 ·
893 阅读 ·
4 点赞 ·
2 评论 ·
11 收藏

python构建学生信息管理系统:简单的安全控制——用户与登录

确保API安全是构建任何系统时的重要考虑因素。以下是一些常见的安全措施,以及如何实现用户模块和相关数据库表和逻辑的建议:安全措施使用HTTPS:始终使用HTTPS来加密客户端和服务器之间的通信。用户认证:实现用户登录系统,确保只有认证用户可以访问受限资源。用户授权:确保用户只能访问他们有权访问的资源。输入验证:对所有用户输入进行验证,防止SQL注入等攻击。密码哈希:存储密码时使用哈希,而不是明文。
原创
发布博客 2024.04.24 ·
537 阅读 ·
3 点赞 ·
0 评论 ·
5 收藏
加载更多