转载请注明出处,谢谢http://blog.csdn.net/ACM_cxlove?viewmode=contents by---cxlove
题意:给出一棵二叉树,每个结点孩子数目为0或者2。每个节点都有一个权值,初始在根,扔一个筛子,筛子的值与结点的权值大小关系影响往左往右的概率。
问给出筛子权值,问到达某个结点的概率。
http://acm.hdu.edu.cn/showproblem.php?pid=4605
做法:肯定需要统计每个点到根的路径中,有哪些结点是需要往左孩子走,哪些需要往右孩子走。然后 根据筛子权值,分别二分,就知道有多少个结点是什么概率。
对于每个结点维护一个set或者线段树是不可达的。
因此有了离线做法:离线处理之后,先处理父亲节点,再处理孩子节点,维护两个线段树或者set,保存到达这个节点,哪些是需要往左遍历,哪些需要往右。之后区间查询或者二分,就能统计个数。
在线做法:利用可持久性,对于每个结点维护一个线段树,就需要利用主席树。做法大致相似。
code : 主席树
- #include <iostream>
- #include <queue>
- #include <algorithm>
- #include <cstdio>
- #include <cstring>
- using namespace std;
- typedef long long LL;
- const int N = 200005;
- const int M = 10000005;
- struct Edge{
- int v,next,k;
- }e[N];
- int start[N], totaledge;
- int T[M], lson[M], rson[M], lcnt[M], rcnt[M];
- int w[N], n, tot, m, x[N], cnt;
- queue<int> que;
- void add(int u,int v,int k){
- e[totaledge].v = v;
- e[totaledge].k = k;
- e[totaledge].next = start[u];
- start[u] = totaledge ++;
- }
- int bulid (int l ,int r){
- int root = tot ++;
- lcnt[root] = rcnt[root] = 0;
- if(l == r){
- lcnt[root] = rcnt[root] = 0;
- return root;
- }
- int m = (l + r) >> 1;
- lson[root] = bulid(l , m);
- rson[root] = bulid(m + 1 , r);
- lcnt[root] = lcnt[lson[root]] + lcnt[rson[root]];
- rcnt[root] = rcnt[lson[root]] + rcnt[rson[root]];
- return root;
- }
- int update(int root,int l,int r, int pos, int lval, int rval) {
- int newroot = tot ++;
- lcnt[newroot] = rcnt[newroot] = 0;
- if(pos == l && pos == r){
- lcnt[newroot] = lcnt[root] + lval;
- rcnt[newroot] += rcnt[root] + rval;
- return newroot;
- }
- int m = (l + r) >> 1;
- if(pos <= m) {
- lson[newroot] = update(lson[root], l, m, pos, lval, rval);
- rson[newroot] = rson[root];
- }
- else {
- rson[newroot] = update(rson[root], m + 1, r, pos, lval, rval);
- lson[newroot] = lson[root];
- }
- lcnt[newroot] = lcnt[lson[newroot]] + lcnt[rson[newroot]];
- rcnt[newroot] = rcnt[lson[newroot]] + rcnt[rson[newroot]];
- return newroot;
- }
- int query(int root,int L,int R, int l,int r, int k){
- if (l > r ) return 0;
- if (l >= cnt) return 0;
- if (r < 0 ) return 0;
- if(L == l && R == r) {
- if(k == 0) return lcnt[root];
- return rcnt[root];
- }
- int m = (L + R) >> 1;
- if(r <= m) return query(lson[root], L, m, l, r, k);
- else if(l > m) return query(rson[root], m + 1, R, l, r, k);
- else return query(lson[root], L ,m , l , m, k) + query(rson[root], m + 1, R, m + 1 ,r, k);
- }
- int main() {
- int t;
- scanf ("%d", &t);
- while (t--) {
- tot = 0;
- totaledge = 0;
- memset (start , -1 , sizeof(start));
- scanf ("%d", &n);
- for (int i = 1 ; i <= n ; i ++) {
- scanf ("%d", &w[i]);
- x[i - 1] = w[i];
- }
- sort (x, x+n);
- cnt = unique(x, x + n) - x;
- x[cnt] = -1;
- T[1] = bulid(0, cnt - 1);
- scanf ("%d", &m);
- for (int i = 0 ; i < m ; i++){
- int u , a , b;
- scanf("%d%d%d", &u, &a, &b);
- add(u , a, 0);
- add(u , b, 1);
- }
- que.push(1);
- while(!que.empty()) {
- int u = que.front();
- que.pop();
- for (int i = start[u] ; i != -1 ; i = e[i].next) {
- int v = e[i].v, k = e[i].k;
- T[v] = update(T[u], 0, cnt - 1, lower_bound(x, x + cnt , w[u]) - x , k == 0 , k == 1);
- que.push(v);
- }
- }
- int q;
- scanf ("%d", &q);
- while(q --){
- int num, v;
- scanf ("%d%d", &v, &num);
- if(v == 1){
- printf("0 0\n");
- continue;
- }
- int p = lower_bound(x, x + cnt , num) - x;
- int l = p - 1 , r = p ;
- if(x[p] == num){
- int ret = query(T[v], 0 , cnt - 1, p, p, 0) + query(T[v], 0 , cnt - 1 , p, p, 1);
- if(ret){
- puts("0");
- continue;
- }
- r ++ ;
- }
- int left_small = query(T[v],0 , cnt - 1, 0, l, 0);
- int left_large = query(T[v],0 , cnt - 1, r , cnt - 1, 0);
- int right_small = query(T[v],0 , cnt - 1, 0, l, 1);
- int right_large = query(T[v],0 , cnt - 1, r , cnt - 1, 1);
- int down = 0, up = 0;
- // cout<<left_small<<" "<<left_large<<" "<<right_small<<" "<<right_large<<endl;
- down += left_small * 3;
- down += left_large;
- down += right_small * 3;
- up += right_small;
- down += right_large;
- printf("%d %d\n",up,down);
- }
- }
- return 0;
- }