pipenv 安装 torch、torchvision、torchaudio报错问题,或者无法输出到requirements.txt中

1.torch安装失败问题

通过pipenv install torch torchvision torchaudio 直接报错,报错截图如下:
在这里插入图片描述
其实就是输入命令不对,想探究原因的,详见github地址

解决方案

# 方式一  以下命令为正确,亲测有效
pipenv install torch torchvision torchaudio --index https://download.pytorch.org/whl/cpu

# 方式二 以下命令为正确,亲测有效 (指定版本安装)
pipenv install torch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 --index https://download.pytorch.org/whl/cpu

# 注:PyTorch 各版本查询地址: https://pytorch.org/get-started/previous-versions/

安装成功截图如下:
在这里插入图片描述

2.torch等依赖未输出到requirements.txt问题

如果你是通过“pip install” 命令方式安装,基本上是不会在Pipfile文件中生成依赖信息,也就不会输出到requirements.txt文件中。

解决方案

# 既然你已使用pipenv工具创建项目环境,请尽可能pipenv命令安装依赖包。
pipenv install ***
pipenv install ***

# pipenv-教程:https://blog.csdn.net/miracleoa/article/details/120337590

P:参数 pipenv --index 使用,其实代替pip -i / pip --extra-index-url 作用

# 从清华镜像源下载
# --index用于指向镜像地址
pipenv install opencv-python --index https://pypi.tuna.tsinghua.edu.cn/simple

P:参数 pipenv --skip-lock 使用,跳过lock操作,主要是lock太太太慢了,懂得都懂

pipenv install opencv-python --index https://pypi.tuna.tsinghua.edu.cn/simple --skip-lock

3.如何通过pipenv生成requirements.txt

注意下pipenv版本,在 pipenv, version 2022.11.11 亲测有效。
(注:pipenv --version 查看版本)

# 命令 pipenv requirements > [输出地址],例子如下:
pipenv requirements requirements.txt                   #输出当前文件夹
### 安装 PyTorch 及其相关库 对于 Python 3.9 和 CUDA 11.6 的环境,在 Windows 平台上可以通过特定的 `.whl` 文件来安装 PyTorchtorchvisiontorchaudio。具体操作如下: #### 使用预编译轮文件 (`.whl`) 安装 通过指定版本的 wheel 文件进行安装能够确保兼容性和稳定性。 ```bash pip install torch-1.12.0+cu116-cp39-cp39-win_amd64.whl[^1] pip install torchvision-0.12.0+cu116-cp39-cp39-win_amd64.whl ``` 这些命令会分别安装对应版本的 PyTorchtorchvisiontorchaudio 库,适用于具有 CUDA 11.6 支持的 Windows AMD64 架构系统,并且与 Python 3.9 版本相匹配。 #### 利用 Conda 环境管理工具安装 另一种方法是借助 Anaconda 或 Miniconda 来创建一个新的虚拟环境并安装所需的软件包。这种方法特别适合那些希望简化依赖关系管理和避免潜在冲突的人群。 ```bash conda create -n myenv python=3.9 conda activate myenv conda install pytorch torchvision torchaudio cudatoolkit=11.6 -c pytorch -c conda-forge[^3] ``` 上述指令首先建立了一个名为 `myenv` 的新环境,接着激活该环境,最后按照给定条件安装了带有 CUDA 11.6 配置的支持 GPU 加速功能的 PyTorch 及其他两个扩展库。 如果遇到 SSL 模块不可用的问题,则可能是因为 OpenSSL 库缺失或者是由于某些原因导致 Python 编译时未正确配置 SSL 支持。针对此情况,建议参照相关文档或社区讨论寻找解决方案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值