LUNA: 将不熟悉的地方靠近熟悉的地方,用于开放式的长尾识别
摘要
在物体识别中,预定义的人工平衡训练类在建模物体不平衡分布的未知类的真实场景中能力有限。在本文中,我们讨论了一种利用度量学习来解决开放集长尾识别(OLTR)任务的有希望的方案。
- 首先,我们提出了一个分布敏感的损失,它对尾部类的权重更大,以减少特征空间中的类内距离。
- 在这些集中的特征集群的基础上,我们引入了一个基于局部密度的度量,称为本地化不熟悉近似熟悉(LUNA),以衡量测试样本的新颖性。LUNA可以灵活处理不同的集群大小,并且通过考虑不同属性的邻居,在集群边界上是可靠的。
- 此外,与大多数现有的工作相反,LUNA是一个具有可解释意义的定量测量,它将开放集的检测缓解为一个简单的二元决定。
我们提出的方法在公共基准数据集上,包括我们自己新引入的关于海洋物种的细粒度OLTR数据集(MSLT),在封闭集识别精度上超过最先进的算法4-6%,在开放集下的F-measure上超过4%,这是第一个自然分布的OLTR数据集,揭示了类别的真正遗传关系。
主要贡献
综上所述,我们声称我们的贡献和技术创新如下:
- 我们收集了一个新的注释良好的真实海洋物种开放长尾(MS-LT)数据集。作为细粒度领域的第一个自然OLTR数据集,它将成为现有人工重新采样的OLTR数据集的坚实补充。它对表征学习和新物种检测提出了新的挑战。
研究提出了一种利用度量学习解决开放集长尾识别(OLTR)问题的方案,名为LUNA,通过加权中心损失减少类内距离并提升尾部类别的识别能力。LUNA因子用于量化测试样本的新颖性,能适应不同的类别分布。此外,他们创建了一个新的海洋物种OLTR数据集,MS-LT,以促进细粒度识别和新物种检测。实验显示,LUNA在封闭集和开放集识别上均优于现有方法。
最低0.47元/天 解锁文章
306

被折叠的 条评论
为什么被折叠?



