- 博客(91)
- 资源 (47)
- 收藏
- 关注
原创 Deep cnn-based multi-task learning for open-set recognition解读
[42]Oza P, Patel V M. Deep cnn-based multi-task learning for open-set recognition[J]. arXiv preprint arXiv:1903.03161, 2019.概述:提出了一种新的基于深度卷积神经网络(CNN)的多任务学习方法,用于开放集的视觉识别。所提出的基于多任务学习的开放集识别(MLOSR)方法包括一个共享的特征提取器网络,以及一个解码器网络和一个分类器网络,分别用于重建和分类。来自解码器网络的重构误差
2021-11-14 13:01:15
3142
1
原创 Generalized odin: Detecting out-of-distribution image without learning from out-of-distribution data
【41】Hsu Y C, Shen Y, Jin H, et al. Generalized odin: Detecting out-of-distribution image without learning from out-of-distribution data[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 10951-10960.1.概述:1.1问
2021-11-12 22:31:34
1059
原创 OpenSMax: Unknown Domain Generation Algorithm Detection ECAI2020开放集识别论文解读
[12] OpenSMax: Unknown Domain Generation Algorithm Detection.ECAI2020:1850-1857本文是openmax的改进版本,同样是通对交叉熵分类网络进行后处理,用来开放集域名检测(未知域名发现)。 openmax的去呗在于建立的单类模型不是极值机,而是ocsvm,并且用来建模的不仅仅是penultimate层,还包括最后一层在训练中,就用普通的交叉熵。在测试时,对每个每个类正确分类样本激活值建立一个ocsvm(算法1,...
2021-11-02 16:51:10
706
1
原创 Deep open intent classification with adaptive decision boundary AAAI2021开放集识别论文解读
【14】Zhang H, Xu H, Lin T E. Deep open intent classification with adaptive decision boundary[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2021, 35(16): 14374-14382.本文提出了自适应决策边界的方法,在分类后处理中,自动选择未知类的决策阈值。在训练中,首先用普通的交叉熵损失函数来训练分类器。然后,基.
2021-11-02 16:49:48
481
原创 Learning Deep Classifiers Consistent With Fine-Grained Novelty DetectionCVPR2021开放集识别论文解读
【15】Cheng J, Vasconcelos N. Learning Deep Classifiers Consistent With Fine-Grained Novelty Detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 1664-1673.本文引入了在CE loss的基础上,增加了类条件高斯分布损失,进行开放集识别。在训练中,本文的损
2021-11-02 16:31:33
313
原创 C2AE: Class Conditioned Auto-Encoder for Open-Set RecognitionCVPR2019开放集识别论文解读
【16】 Oza P , Patel V M . C2AE: Class Conditioned Auto-Encoder for Open-Set Recognition[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2019..本文引入了在CE loss的交叉熵分类基础上,增加了条件自编码器损失的条件自编码器,进行开放集识别,命名为C2AE。在训练中,包括两个阶段,其.
2021-11-02 16:30:14
672
原创 Conditional Gaussian Distribution Learning for Open Set Recognition CVPR2020开放集识别论文解读
[17] Sun X , Yang Z , Zhang C , et al. Conditional Gaussian Distribution Learning for Open Set Recognition[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2020.在本文中,我们提出了一种新的方法,即条件高斯分布学习(CongDL,实际可以看成是条件阶梯式VAE,不过...
2021-11-02 16:27:48
868
原创 Towards Open Set Deep Networks CVPR2016开放集识别论文解读
[11] Bendale A , Boult T . Towards Open Set Deep Networks[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2016.本文开发了通对交叉熵分类网络进行后处理,用来开放集分类。在训练中,就用普通的交叉熵。在测试时,对每个每个类正确分类样本激活值建立一个极值分布(算法1),并用来修正出一个新的K+1类分类概率(算法2)。..
2021-11-02 09:45:48
848
原创 DOC: Deep Open Classification of Text Documents EMNLP2017开放集识别论文解读
[10] Shu L , Xu H , Liu B . DOC: Deep Open Classification of Text Documents[C]// Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. 2017.本文开发了一种新的方法,称为DOC,微改交叉熵损失函数用来开放集文本分类。在训练中,通过微改的交叉熵损失函数来最大化真实类的概率,最小化非真实类的概...
2021-11-01 19:44:45
205
原创 Towards open world object detection CVPR2021开放集识别率论文解读
【9】Joseph K J, Khan S, Khan F S, et al. Towards open world object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 5830-5840.本文开发了一种新的方法,称为ORE,基于对比聚类,位置类别RPN网络和基于能量的未知类型识别进行开放世界目标检测。在训练中,该方法主要是基于.
2021-11-01 19:44:03
399
原创 The importance of metric learning for robotic vision: Open set recognition and active learning 解读
[8] Meyer B J, Drummond T. The importance of metric learning for robotic vision: Open set recognition and active learning[C]//2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019: 2924-2931.提出了一种用于新奇事物检测和开放集识别的深度度量学习方法,表明它优于传统的CNN.
2021-11-01 19:43:19
156
原创 Robust high dimensional stream classification with novel class detectionICDE2019开放集识别论文解读
[7]Wang Z, Kong Z, Changra S, et al. Robust high dimensional stream classification with novel class detection[C]//2019 IEEE 35th International Conference on Data Engineering (ICDE). IEEE, 2019: 1418-1429.本文中提出一个有效的学习框架,即基于CNN的原型集合(CPE),利用综合原型损失来代替CE los.
2021-11-01 19:42:33
137
原创 Open-Set Recognition with Gaussian Mixture Variational AutoencodersAAAI2021开放集识别论文解读
[6]Cao A, Luo Y, Klabjan D. Open-Set Recognition with Gaussian Mixture Variational Autoencoders[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2021, 35(8): 6877-6884.本文利用高斯混合变分自编码器的损失来替代CE loss,提出了一种高斯混合变分自编码器GMVAE方法来进行开放集识别。在训练中,与普
2021-11-01 19:41:51
538
原创 Evidential Deep Learning for Open Set Action Recognition CVPR2021开放集识别论文解读
[5]Bao W, Yu Q, Kong Y. Evidential Deep Learning for Open Set Action Recognition[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021: 13349-13358.综上所述,本文的贡献有三方面。- 我们的深度证据行动识别(DEAR)方法执行了新的证据学习,以支持具有原则性和高效不确定性评估的开放集行动识别。 -
2021-11-01 19:41:17
789
1
原创 Energy-Based Open-World Uncertainty Modeling for Confidence Calibration CVPR2021开放集识别论文解读
[4]Wang Y, Li B, Che T, et al. Energy-Based Open-World Uncertainty Modeling for Confidence Calibration[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021: 9302-9311.本文的贡献总结如下。1)首先,我们通过将传统的K-way softmax转化为新型的K+1-way表述,克服了封闭.
2021-11-01 19:40:35
420
3
原创 Deep Metric Learning for Open World Semantic Segmentation CVPR2021开放集识别论文解读
[3] Cen J, Yun P, Cai J, et al. Deep Metric Learning for Open World Semantic Segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021: 15333-15342.本文联合判别交叉熵(DCE)损失和变分损失来替代CE loss,基于深度度量学习网络(DMLNet)与对比性聚类来实现开放集语义分割。(.
2021-11-01 19:39:57
636
原创 Class Anchor Clustering: A Loss for Distance-based Open Set Recognition WACV2021开放集识别论文解读
[2] Miller D , Sunderhauf N , Milford M , et al. Class Anchor Clustering: A Loss for Distance-based Open Set Recognition[C]// 2021 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE, 2021.本文引入了类锚聚类(CAC)损失来替代CE loss,在基于距离的开放集识别中达到了最...
2021-11-01 19:39:10
720
原创 Centralized Large Margin Cosine Loss for Open-Set Deep Palmprint Recognition TCSV2019T开放集识别论文解读
[1] D Zhong, Zhu J . Centralized Large Margin Cosine Loss for Open-Set Deep Palmprint Recognition[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019, PP(99):1-1.本文将常规的CE loss替换为中心大边际损失,提出了一个基于中心大边际损失的开放集掌纹识别方法。(压缩了已知类的空间,留出了m空间给未知..
2021-11-01 19:37:39
235
原创 CV,NLP等计算机领域顶会顶刊代码
1.CVPRhttps://github.com/extreme-assistant/CVPR2021-Paper-Code-InterpretationCVPR2021:https://github.com/extreme-assistant/CVPR2021-Paper-Code-Interpretation/blob/master/CVPR2021.mdCVPR2020:CVPR2021-Paper-Code-Interpretation/CVPR2020.md at master · e
2021-10-04 19:39:13
1278
原创 Open Set Recognition for Automatic Target Classification With Rejection
0.摘要监督下的分类任务的训练集通常范围有限,只包含几个类别的例子。在实践中,在训练中没有出现过的类被赋予了总是不正确的标签。开放集识别(OSR)算法通过为分类器提供一个拒绝未知样本的选项来解决这个问题。在这项工作中,我们介绍了一种新的OSR算法,并将其性能与当前其他用于开放集图像分类的方法进行比较。1. 引言通常情况下,用于自动目标识别的监督分类器是使用代表相对较少的目标类别的数据集来训练的。为了证明这种封闭集分类器的有效性,它们经常使用可能被一些噪声或其他因素干扰的训练类的样本进行测试。然而
2021-06-17 17:47:35
477
原创 Probability Models for Open Set Recognition(开放集识别的概率模型)
目录0.摘要--(三要素:概率、紧凑(消减+阈值,当然也可以是其他))1.引言2.背景和相关工作3紧凑消减概率模型4.概率估计和W-SVM4.1 纳入CAP模型的二元RBF SVM(将二类SVM加在SVM后)4.2 有依据的概率估计(使用正类和不属于负类的概率)4.3 W-SVM算法(校准两个极值分布来进行分类)5 实验评估6 讨论0.摘要--(三要素:概率、紧凑(消减+阈值,当然也可以是其他))计算机视觉中的现实世界任务经常涉及到开放集识别:在对世界不.
2021-06-15 16:00:02
1980
1
原创 Best Fitting Hyperplanes for Classification(用于分类的最佳拟合超平面)
0.摘要-在本文中,我们提出了比经典的大边际分类器更适合开放集识别和物体检测任务的新型方法。所提出的方法使用了最佳拟合超平面方法,其主要思想是找到最佳拟合超平面,使每个超平面接近其中一个类别的样本,并尽可能远离其他类别的样本。为此,我们提出了两个不同的分类器。第一个分类器解决了一个凸的二次优化问题,但负的样本可以位于最佳拟合超平面的一侧。而第二个分类器通过使用凹凸程序,允许负样本位于拟合超平面的两边。这两种方法都是通过使用内核技巧扩展到非线性情况。与文献中现有的超平面拟合分类器相比,我们提出的方法适用于
2021-06-09 19:10:38
714
原创 开放集识别
0.摘要1.到目前为止,在计算机视觉中,几乎所有基于机器学习的识别算法的实验评估都采用了封闭集识别的形式,即在训练时已知所有测试类。对于视觉应用来说,一个更现实的场景是开放集识别,在训练时存在不完整的世界知识,在测试时未知的类可以提交给算法。本文探讨了开集识别的性质,并将其定义形式化为约束最小化问题。现有算法不能很好地解决开放集识别问题,因为它需要很强的泛化能力。作为解决方案的一个步骤,我们引入了一个新的1-vs-set机器,它雕刻一个决策空间的边缘距离的1-class或binary svm的线性...
2021-06-09 00:00:19
4763
11
原创 开放集识别的最新进展总结(源于Recent Advances in Open Set Recognition: A Survey)
摘要:在现实的识别/分类任务中,由于受到各种客观因素的限制,在训练一个识别器或分类器时,通常很难收集到训练样本来涵盖所有的类。更现实的情况是开放集识别(open set recognition, OSR),在训练时存在对世界不完整的知识,测试时可以将未知的类提交给算法,这就要求分类器不仅要对可见的类进行准确的分类,还要有效地处理不可见的类。本文提供了对现有开放集识别技术的全面调查,涵盖了从相关定义、模型表示、数据集、评估标准和算法比较等各个方面。此外,我们还简要分析了OSR与零样本、一次样本(少样本)识别/
2021-06-07 22:09:44
10338
1
翻译 异常检测的深度学习:一项调查(翻译)
摘要异常检测是一个重要的问题,在不同的研究领域和应用领域都得到了充分的研究。本调查的目的有两个方面,首先我们对基于深度学习的异常检测的研究方法进行了结构化和全面的概述。此外,我们回顾了这些方法在不同应用领域中对异常现象的采用情况,并评估其有效性。我们根据所采用的基本假设和方法,将最先进的深度异常检测研究技术归为不同的类别。在每个类别中,我们概述了基本的异常检测技术及其变体,并提出了关键假设,以区分正常和异常行为。此外,对于每个类别,我们还介绍了其优点和局限性,并讨论了这些技术在实际应用领域的计算复杂性。
2021-06-03 09:57:42
2928
2
翻译 Deep Learning for Anomaly Detection: A Review(翻译)
- CH1: 异常检测召回率低。由于异常现象是非常罕见和异质的,所以很难识别所有的异常现象。许多正常情况被错误地报告为异常情况,而真正的、复杂的异常情况被遗漏。尽管多年来引入了大量的异常检测方法,但目前最先进的方法,特别是无监督方法(如[17,84]),在真实世界的数据集上仍然经常产生高误报率[20,115]。如何减少误报并提高检测召回率是最重要但也是最困难的挑战之一,特别是对于未能发现异常的巨大花费。- CH2:高维和/或非独立数据中的异常检测。异常现象往往在低维空间中表现出明显的异常特征,但在高维空
2021-06-02 21:16:42
3427
2
翻译 A Detailed Investigation and Analysis of Using Machine Learning Techniques for Intrusion Detection译一
入侵检测是当今网络世界的重要安全问题之一。已经开发了大量的基于机器学习方法的技术。然而,它们在识别所有类型的入侵方面并不十分成功。在本文中,我们对各种机器学习技术进行了详细的调查和分析,以找到与各种机器学习技术在检测入侵活动方面的问题的原因。攻击分类和攻击特征的映射被提供给每个攻击对应。还讨论了与使用网络攻击数据集检测低频攻击有关的问题,并提出了可行的改进方法。机器学习技术在检测各类攻击的能力方面进行了分析和比较。还讨论了与每一类技术相关的局限性。本文还包括各种机器学习的数据挖掘工具。最后,提供了使用机器学
2021-05-19 16:56:56
812
原创 半监督聚类方法
传统无监督聚类算法在划分数据时并不需要任何数据属性,但在实际应用中,存在少量带有独立类标签或成对约束的监督信息的数据样本,学者们致力于将这些为数不多的监督信息运用于聚类,以得到更优的聚类结果,从而提出 了半监督聚类。1.无监督聚类先说无监督聚类,如图 1-2 所示,现有的无监督聚类算法按照度量数据样本间相似度的方式, 以及聚类过程中数据样本之间的关系被划分为五大类,即基于划分方法的聚类、 基于层次方法的聚类、基于密度方法的聚类、基于网格方法的聚类、基于模型方 法的聚类[7]。所谓基于划分方法的聚类(
2021-05-13 21:09:56
9653
5
翻译 From Intrusion Detection to Attacker Attribution: A Comprehensive Survey of Unsupervised Methods翻译
从入侵检测到攻击者溯源:无监督方法的全面调查0.摘要在过去的五年里,网络攻击的频率和多样性都在增加。这一点是正确的,因为越来越多的组织每天都在承认受到损害。文献中提出了许多基于误用和异常的入侵检测系统(IDS),它们依赖于签名、监督或统计方法,但它们的可信度是值得商榷的。此外,正如本文所揭示的...
2021-05-12 21:30:24
559
翻译 A survey of network-based intrusion detection data sets翻译二(5-8)
5.数据集我们认为,在寻找适当的基于网络的数据集时,数据集的属性 "标签 "和 "格式 "是最具决定性的属性。入侵检测方法(监督或无监督)决定了是否需要标签以及需要哪种数据(数据包、流量或其他)。因此,表2提供了所有基于网络的数据集在这两个属性方面的分类。表3对基于网络的入侵检测数据集与第4节的数据集属性进行了更详细的概述。在寻找基于网络的数据集时,特定攻击场景的存在是一个重要方面。因此,表3指出了攻击流量的存在,而表4提供了数据集内特定攻击的细节。关于数据集的论文描述了不同抽象层次的攻击。例如,Vas
2021-05-10 23:05:06
1043
翻译 A survey of network-based intrusion detection data sets翻译一(1-4)
0.摘要标记的数据集对于训练和评估基于异常的网络入侵检测系统是必要的。这项工作对基于网络的入侵检测的数据集进行了重点文献调查,并详细描述了基于数据包和流量的网络数据。该文确定了15种不同的属性,以评估个别数据集对特定评估方案的适用性。这些属性涵盖了广泛的标准,并被归为五类,如数据量或提供结构化搜索的记录环境。基于这些属性,对现有数据集进行了全面的概述。这个概述还强调了每个数据集的特殊性。此外,这项工作还简要介绍了基于网络的数据的其他来源,如流量生成器和数据存储库。最后,我们讨论了我们的观察,并为使用和创
2021-05-10 22:03:37
353
翻译 Deep learning methods in network intrusion detection: A survey and an objective comparison翻译二(4-6节)
4.经验性比较4.1实验概述:模型、数据集和评价指标在本文回顾的文献中,入侵检测问题经常被表述为一个分类问题。为了进行实证分析,我们从模型分类学的不同类别中选择了四个神经网络分类器(图2),并在四个流行的入侵检测数据集上对它们进行了训练和评估。对于每个深度学习模型类型,实现了一个浅层模型(单隐藏层)和一个深度模型(多隐藏层)。选择这些模型是因为它们是入侵检测研究文献中经常使用的深度学习模型的代表(适用性),并且它们代表了监督、半监督和顺序类型的模型(多样性和覆盖面)。以下模型被选作实证比较。..
2021-05-09 21:28:51
527
翻译 Deep learning methods in network intrusion detection: A survey and an objective comparison翻译一(1-3节)
0摘要将深度学习模型用于网络入侵检测任务一直是网络安全领域的一个活跃研究领域。虽然有几份优秀的调查报告涵盖了关于这个主题的越来越多的研究,但文献中缺乏对不同深度学习模型在受控环境下的客观比较,特别是在最近的入侵检测数据集上。在本文中,我们首先介绍了入侵检测中深度学习模型的分类,并总结了关于这个主题的研究论文。然后,我们在两个传统数据集(KDD 99、NSL-KDD)和两个现代数据集(CIC-IDS2017、CIC-IDS2018)上为入侵分类任务训练和评估了四个关键的深度学习模型--前馈神经网络、自动编
2021-05-09 15:38:43
781
3
原创 开放集识别之GPD and GEV Classiers
问题概述:1)区分已知和未知新数据的算法识别是最基本的问题(开放集识别),但2)当未知类别样本与已知类别样本具有非常大的不同时,应该仍然能够识别未知类样本(更大的开放性,例如大类不同,随机噪声变成未知样本),3)其次也应该支持增量学习。背景:基于EVT,参考(https://blog.csdn.net/pingguolou/article/details/107521555)方案与主要贡献:方案细节:理论分析:1)极值分布(理论generalized extremevalue,GEV)是
2020-07-24 16:42:51
739
原创 开放集识别方法之极值机(The Extreme Value Machine,2018 TPAMI)
问题概述:识别新类并增量学习新类,即监督学习的分类算法应当能够拒绝未知类,把这些未知类孤立出来。(开放集识别)这样就可以人工标记这些未知类,然后以增量的方式加入到原来的分类器中,进一步强化分类能力。(增量学习)背景:方案与主要贡献:建立了一个理论上健全的分类器——极值机(EVM)。EVM从统计极值理论(EVT)中得到了很好的解释,是第一个能够进行非线性无核可变带宽增量学习的分类器。与同一深度网络衍生特征空间中的其他分类器相比,该分类器在ImageNet数据集的基准分区上具有较高的准确率和效率。贡献
2020-07-23 10:25:11
2646
4
原创 Few-Shot Open-Set Recognition using Meta-Learning
解决的问题:在少样本情形下的开放集识别(=少样本分类+开放集识别)。与其他识别任务的区别如下为什么要解决这个问题:1)首先,开放集识别在所有设置下都是一个挑战。在少样本的训练模式下训练的识别器面对看不见的类别的可能性并不低。因此,支持少样本的开放式识别技术比不支持的开放式识别技术更有用。2)其次,少样本开放集识别由于缺少标记数据,比大规模开放集识别更难解决。因此,少样本设置对开放集识别的研究提出了更大的挑战。3)第三,和开放集识别一样,少样本识别的主要挑战是对训练中看不到的数据做出准确的判定。由于这
2020-07-19 15:48:52
1289
原创 Toward Open Set Recognition
摘要解读1.到目前为止,在计算机视觉中,几乎所有基于机器学习的识别算法的实验评估都采用了封闭集识别的形式,即在训练时已知所有测试类。对于视觉应用来说,一个更现实的场景是开放集识别,在训练时存在不完整的世界知识,在测试时未知的类可以提交给算法。解读:陈述背景,指明为什么要进行开放集识别。2.本文探讨了开集识别的性质,并将其定义形式化为约束最小化问题。解读:将开放集识别定义为经验风险+开放空间风险最小化问题3.现有算法不能很好地解决开放集识别问题,因为它需要很强的泛化能力。作为解决方案的一个步...
2020-07-14 21:31:33
2189
3
原创 Towards OpenWorld Recognition
Abhijit Bendale, Terrance BoultUniversity of Colorado at Colorado Spring0.摘要随着计算机技术的发展,丰富的分类模型和高计算能力的视觉识别系统得到了广泛的应用。在现实世界中的识别提出了在受控的实验室环境中不明显的多重挑战。数据集是动态的,必须不断地检测并添加新的类别。在预测时,一个训练有素的系统必须处理无数看不见的类别。操作系统需要最少的停机时间,即使是学习。为了处理这些操作问题,我们提出了开放世界识别的问题并对其进行了正式
2020-07-08 11:56:50
1449
翻译 OLTR Large-Scale Long-Tailed Recognition in an OpenWorld
《Large-Scale Long-Tailed Recognition in an OpenWorld》Ziwei Liu1;2 Zhongqi Miao2 Xiaohang Zhan1 Jiayun Wang2 Boqing Gong2y Stella X. Yu20摘要:真实世界的数据通常有一个长尾和开放式的分布。一个实际的认知系统必须对多样本类别和少样本类别进行分类,从少数已知的事例中归纳,对于从未见过的事例中识别为新事物。我们将开放长尾识别(OLTR)定义为从自然分布的数据中学习,并在包
2020-07-07 00:00:14
2308
原创 西瓜书的集成学习
所谓集成学习,就是集成多个个体学习器来完成同一个任务,集成的方式可以是投票、加权什么的,这里的个体学习器可以是决策树、神经网络、朴素贝叶斯、SVM等。集成学习针对弱学习器(略强于瞎猜的学习器)的效果更为明显,因此通常这里的个体学习器都比较弱。其次,虽然对弱学习器的效果更明显,但为了在得到相同效果下使用更少的学习器,大家还是用强学习器比较好。最后,如果这里的个体学习器只包括一种学习器,这种集成学习是同质学习,学习的方法通常也叫基学习算法,而这里的学习器则称为基学习器。如果这里的个体学习器只包括...
2020-05-10 20:38:33
236
清华大学计算机学科推荐期刊会议列表-20190818.pdf
2020-02-04
shape_predictor_68_face_landmarks.dat.bz2
2017-10-18
Fingerprint Liveness Detection by Local Phase Quantization
2017-06-02
解决Ubuntu Desktop和Centos Desktop安装Nvidia驱动后桌面异常问题.doc
2017-05-18
Information Theory, Inference, and Learning Algorithms
2017-05-04
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅