Annotated Hadoop: 第二节 MapReduce框架结构

8 篇文章 0 订阅

2          MapReduce 框架结构

Map/Reduce 是一个用于大规模数据处理的分布式计算模型,它最初是由 Google 工程师设计并实现的, Google 已经将它完整的 MapReduce 论文公开发布了。其中对它的定义是, Map/Reduce 是一个编程模型( programming model ),是一个用于处理和生成大规模数据集( processing and generating large data sets )的相关的实现。用户定义一个 map 函数来处理一个 key/value 对以生成一批中间的 key/value 对,再定义一个 reduce 函数将所有这些中间的有着相同 key 的 values 合并起来。很多现实世界中的任务都可用这个模型来表达。

 

Hadoop 的 Map/Reduce 框架也是基于这个原理实现的,下面简要介绍一下 Map/Reduce 框架主要组成及相互的关系。

2.1       总体结构

2.1.1            Mapper 和 Reducer

运行于 Hadoop 的 MapReduce 应用程序最基本的组成部分包括一个 Mapper 和一个 Reducer 类,以及一个创建 JobConf 的执行程序,在一些应用中还可以包括一个 Combiner 类,它实际也是 Reducer 的实现。

2.1.2            JobTracker 和 TaskTracker

它们都是由一个 master 服务 JobTracker 和多个运行于多个节点的 slaver 服务 TaskTracker 两个类提供的服务调度的。 master 负责调度 job 的每一个子任务 task 运行于 slave 上,并监控它们,如果发现有失败的 task 就重新运行它, slave 则负责直接执行每一个 task 。 TaskTracker 都需要运行在 HDFS 的 DataNode 上,而 JobTracker 则不需要,一般情况应该把 JobTracker 部署在单独的机器上。

2.1.3            JobClient

每一个 job 都会在用户端通过 JobClient 类将应用程序以及配置参数 Configuration 打包成 jar 文件存储在 HDFS ,并把路径提交到 JobTracker 的 master 服务,然后由 master 创建每一个 Task (即 MapTask ReduceTask )将它们分发到各个 TaskTracker 服务中去执行。

2.1.4            JobInProgress

JobClient 提交 job 后, JobTracker 会创建一个 JobInProgress 来跟踪和调度这个 job ,并把它添加到 job 队列里。 JobInProgress 会根据提交的 job jar 中定义的输入数据集(已分解成 FileSplit )创建对应的一批 TaskInProgress 用于监控和调度 MapTask ,同时在创建指定数目的 TaskInProgress 用于监控和调度 ReduceTask ,缺省为 1 个 ReduceTask

2.1.5            TaskInProgress

JobTracker 启动任务时通过每一个 TaskInProgress 来 launchTask ,这时会把 Task 对象(即 MapTask ReduceTask )序列化写入相应的 TaskTracker 服务中, TaskTracker 收到后会创建对应的 TaskInProgress (此 TaskInProgress 实现非 JobTracker 中使用的 TaskInProgress ,作用类似)用于监控和调度该 Task 。启动具体的 Task 进程是通过 TaskInProgress 管理的 TaskRunner 对象来运行的。 TaskRunner 会自动装载 job jar ,并设置好环境变量后启动一个独立的 java child 进程来执行 Task ,即 MapTask 或者 ReduceTask ,但它们不一定运行在同一个 TaskTracker 中。

2.1.6            MapTask 和 ReduceTask

一个完整的 job 会自动依次执行 Mapper Combiner (在 JobConf 指定了 Combiner 时执行)和 Reducer ,其中 Mapper Combiner 是由 MapTask 调用执行, Reducer 则由 ReduceTask 调用, Combiner 实际也是 Reducer 接口类的实现。 Mapper 会根据 job jar 中定义的输入数据集按 <key1,value1> 对读入,处理完成生成临时的 <key2,value2> 对,如果定义了 Combiner MapTask 会在 Mapper 完成调用该 Combiner 将相同 key 的值做合并处理,以减少输出结果集。 MapTask 的任务全完成即交给 ReduceTask 进程调用 Reducer 处理,生成最终结果 <key3,value3> 对。这个过程在下一部分再详细介绍。

 

下图描述了 Map/Reduce 框架中主要组成和它们之间的关系:

 

2.2       Job 创建过程

2.2.1            JobClient.runJob() 开始运行 job 并分解输入数据集

一个 MapReduce 的 Job 会通过 JobClient 类根据用户在 JobConf 类中定义的 InputFormat 实现类来将输入的数据集分解成一批小的数据集,每一个小数据集会对应创建一个 MapTask 来处理。 JobClient 会使用缺省的 FileInputFormat 类调用 FileInputFormat .getSplits() 方法生成小数据集,如果判断数据文件是 isSplitable() 的话,会将大的文件分解成小的 FileSplit ,当然只是记录文件在 HDFS 里的路径及偏移量和 Split 大小。这些信息会统一打包到 jobFile 的 jar 中并存储在 HDFS 中,再将 jobFile 路径提交给 JobTracker 去调度和执行。

2.2.2            JobClient.submitJob() 提交 job 到 JobTracker

jobFile 的提交过程是通过 RPC 模块(有单独一章来详细介绍)来实现的。大致过程是, JobClient 类中通过 RPC 实现的 Proxy 接口调用 JobTracker 的 submitJob() 方法,而 JobTracker 必须实现 JobSubmissionProtocol 接口。 JobTracker 则根据获得的 jobFile 路径创建与 job 有关的一系列对象(即 JobInProgress 和 TaskInProgress 等)来调度并执行 job 。

 

JobTracker 创建 job 成功后会给 JobClient 传回一个 JobStatus 对象用于记录 job 的状态信息,如执行时间、 Map 和 Reduce 任务完成的比例等。 JobClient 会根据这个 JobStatus 对象创建一个 NetworkedJob RunningJob 对象,用于定时从 JobTracker 获得执行过程的统计数据来监控并打印到用户的控制台。

 

与创建 Job 过程相关的类和方法如下图所示

 

 

2.3       Job 执行过程

上面已经提到, job 是统一由 JobTracker 来调度的,具体的 Task 分发给各个 TaskTracker 节点来执行。下面通过源码来详细解析执行过程,首先先从 JobTracker 收到 JobClient 的提交请求开始。

2.3.1            JobTracker 初始化 Job 和 Task 队列过程

2.3.1.1     JobTracker.submitJob() 收到请求

JobTracker 接收到新的 job 请求(即 submitJob() 函数被调用)后,会创建一个 JobInProgress 对象并通过它来管理和调度任务。 JobInProgress 在创建的时候会初始化一系列与任务有关的参数,如 job jar 的位置(会把它从 HDFS 复制本地的文件系统中的临时目录里), Map 和 Reduce 的数据, job 的优先级别,以及记录统计报告的对象等。

2.3.1.2     JobTracker.resortPriority() 加入队列并按优先级排序

JobInProgress 创建后,首先将它加入到 jobs 队列里,分别用一个 map 成员变量 jobs 用来管理所有 jobs 对象,一个 list 成员变量 jobsByPriority 用来维护 jobs 的执行优先级别。之后 JobTracker 会调用 resortPriority() 函数,将 jobs 先按优先级别排序,再按提交时间排序,这样保证最高优先并且先提交的 job 会先执行。

2.3.1.3     JobTracker.JobInitThread 通知初始化线程

然后 JobTracker 会把此 job 加入到一个管理需要初始化的队列里,即一个 list 成员变量 jobInitQueue 里。通过此成员变量调用 notifyAll() 函数,会唤起一个用于初始化 job 的线程 JobInitThread 来处理( JobTracker 会有几个内部的线程来维护 jobs 队列,它们的实现都在 JobTracker 代码里,稍候再详细介绍)。 JobInitThread 收到信号后即取出最靠前的 job ,即优先级别最高的 job ,调用 JobInProgress 的 initTasks() 函数执行真正的初始化工作。

2.3.1.4     JobInProgress.initTasks() 初始化TaskInProgress

Task 的初始化过程稍复杂些,首先步骤 JobInProgress 会创建 Map 的监控对象。在 initTasks() 函数里通过调用 JobClient 的 readSplitFile() 获得已分解的输入数据的 RawSplit 列表,然后根据这个列表创建对应数目的 Map 执行管理对象 TaskInProgress 。在这个过程中,还会记录该 RawSplit 块对应的所有在 HDFS 里的 blocks 所在的 DataNode 节点的 host ,这个会在 RawSplit 创建时通过 FileSplit 的 getLocations() 函数获取,该函数会调用 DistributedFileSystem 的 getFileCacheHints() 获得(这个细节会在 HDFS 模块中讲解)。当然如果是存储在本地文件系统中,即使用 LocalFileSystem 时当然只有一个 location 即“ localhost ”了。

 

其次 JobInProgress 会创建 Reduce 的监控对象,这个比较简单,根据 JobConf 里指定的 Reduce 数目创建,缺省只创建 1 个 Reduce 任务。监控和调度 Reduce 任务的也是 TaskInProgress 类,不过构造方法有所不同, TaskInProgress 会根据不同参数分别创建具体的 MapTask 或者 ReduceTask

 

JobInProgress 创建完 TaskInProgress 后,最后构造 JobStatus 并记录 job 正在执行中,然后再调用 JobHistory .JobInfo .logStarted() 记录 job 的执行日志。到这里 JobTracker 里初始化 job 的过程全部结束,执行则是通过另一异步的方式处理的,下面接着介绍它。

 

与初始化 Job 过程相关的类和方法如下图所示

 

2.3.2            TaskTracker 执行 Task 的过程

Task 的执行实际是由 TaskTracker 发起的, TaskTracker 会定期(缺省为 10 秒钟,参见 MRConstants 类中定义的 HEARTBEAT_INTERVAL 变量)与 JobTracker 进行一次通信,报告自己 Task 的执行状态,接收 JobTracker 的指令等。如果发现有自己需要执行的新任务也会在这时启动,即是在 TaskTracker 调用 JobTracker 的 heartbeat() 方法时进行,此调用底层是通过 IPC 层调用 Proxy 接口(在 IPC 章节详细介绍)实现。这个过程实际比较复杂,下面一一简单介绍下每个步骤。

2.3.2.1     TaskTracker.run() 连接JobTracker

TaskTracker 的启动过程会初始化一系列参数和服务(另有单独的一节介绍),然后尝试连接 JobTracker 服务(即必须实现 InterTrackerProtocol 接口),如果连接断开,则会循环尝试连接 JobTracker ,并重新初始化所有成员和参数,此过程参见 run() 方法。

2.3.2.2     TaskTracker.offerService() 主循环

如果连接 JobTracker 服务成功, TaskTracker 就会调用 offerService() 函数进入主执行循环中。这个循环会每隔 10 秒与 JobTracker 通讯一次,调用 transmitHeartBeat() 获得 HeartbeatResponse 信息。然后调用 HeartbeatResponse 的 getActions() 函数获得 JobTracker 传过来的所有指令即一个 TaskTrackerAction 数组。再遍历这个数组,如果是一个新任务指令即 LaunchTaskAction 则调用 startNewTask() 函数执行新任务,否则加入到 tasksToCleanup 队列,交给一个 taskCleanupThread 线程来处理,如执行 KillJobAction 或者 KillTaskAction 等。

2.3.2.3     TaskTracker.transmitHeartBeat() 获取JobTracker 指令

在 transmitHeartBeat() 函数处理中, TaskTracker 会创建一个新的 TaskTrackerStatus 对象记录目前任务的执行状况,然后通过 IPC 接口调用 JobTracker 的 heartbeat() 方法发送过去,并接受新的指令,即返回值 TaskTrackerAction 数组。在这个调用之前, TaskTracker 会先检查目前执行的 Task 数目以及本地磁盘的空间使用情况等,如果可以接收新的 Task 则设置 heartbeat() 的 askForNewTask 参数为 true 。操作成功后再更新相关的统计信息等。

2.3.2.4     TaskTracker.startNewTask() 启动新任务

此函数的主要任务就是创建 TaskTracker$TaskInProgress 对象来调度和监控任务,并把它加入到 runningTasks 队列中。完成后则调用 localizeJob() 真正初始化 Task 并开始执行。

2.3.2.5     TaskTracker.localizeJob() 初始化job 目录等

此函数主要任务是初始化工作目录 workDir ,再将 job jar 包从 HDFS 复制到本地文件系统中,调用 RunJar.unJar() 将包解压到工作目录。然后创建一个 RunningJob 并调用 addTaskToJob() 函数将它添加到 runningJobs 监控队列中。完成后即调用 launchTaskForJob() 开始执行 Task 。

2.3.2.6     TaskTracker.launchTaskForJob() 执行任务

启动 Task 的工作实际是调用 TaskTracker$TaskInProgress 的 launchTask() 函数来执行的。

2.3.2.7     TaskTracker$TaskInProgress.launchTask() 执行任务

执行任务前先调用 localizeTask() 更新一下 jobConf 文件并写入到本地目录中。然后通过调用 Task 的 createRunner() 方法创建 TaskRunner 对象并调用其 start() 方法最后启动 Task 独立的 java 执行子进程。

2.3.2.8     Task.createRunner() 创建启动Runner 对象

Task 有两个实现版本,即 MapTask ReduceTask ,它们分别用于创建 Map 和 Reduce 任务。 MapTask 会创建 MapTaskRunner 来启动 Task 子进程,而 ReduceTask 则创建 ReduceTaskRunner 来启动。

2.3.2.9     TaskRunner.start() 启动子进程真正执行Task

这里是真正启动子进程并执行 Task 的地方。它会调用 run() 函数来处理。执行的过程比较复杂,主要的工作就是初始化启动 java 子进程的一系列环境变量,包括设定工作目录 workDir ,设置 CLASSPATH 环境变量等(需要将 TaskTracker 的环境变量以及 job jar 的路径合并起来)。然后装载 job jar 包,调用 runChild() 方法启动子进程,即通过 ProcessBuilder 来创建,同时子进程的 stdout/stdin/syslog 的输出定向到该 Task 指定的输出日志目录中,具体的输出通过 TaskLog 类来实现。这里有个小问题, Task 子进程只能输出 INFO 级别日志,而且该级别是在 run() 函数中直接指定,不过改进也不复杂。

 

与 Job 执行过程相关的类和方法如下图所示

 

 

2.4       JobTracker 和TaskTracker

如上面所述, JobTracker TaskTracker 是 MapReduce 框架最基本的两个服务,其他所有处理均由它们调度执行,下面简单介绍它们内部提供的服务及创建的线程,详细过程下回分解 J

2.4.1            JobTracker 的服务和线程

JobTracker 是 MapReduce 框架中最主要的类之一,所有 job 的执行都由它来调度,而且 Hadoop 系统中只配置一个 JobTracker 应用。启动 JobTracker 后它会初始化若干个服务以及若干个内部线程用来维护 job 的执行过程和结果。下面简单介绍一下它们。

 

首先, JobTracker 会启动一个 interTrackerServer ,端口配置在 Configuration 中的 "mapred.job.tracker" 参数,缺省是绑定 8012 端口。它有两个用途,一是用于接收和处理 TaskTracker 的 heartbeat 等请求,即必须实现 InterTrackerProtocol 接口及协议。二是用于接收和处理 JobClient 的请求,如 submitJob , killJob 等,即必须实现 JobSubmissionProtocol 接口及协议。

 

其次,它会启动一个 infoServer ,运行 StatusHttpServer ,缺省监听 50030 端口。是一个 web 服务,用于给用户提供 web 界面查询 job 执行状况的服务。

 

JobTracker 还会启动多个线程, ExpireLaunchingTasks 线程用于停止那些未在超时时间内报告进度的 Tasks 。 ExpireTrackers 线程用于停止那些可能已经当掉的 TaskTracker ,即长时间未报告的 TaskTracker 将不会再分配新的 Task 。 RetireJobs 线程用于清除那些已经完成很长时间还存在队列里的 jobs 。 JobInitThread 线程用于初始化 job ,这在前面章节已经介绍。 TaskCommitQueue 线程用于调度 Task 的那些所有与 FileSystem 操作相关的处理,并记录 Task 的状态等信息。

 

2.4.2            TaskTracker 的服务和线程

TaskTracker 也是 MapReduce 框架中最主要的类之一,它运行于每一台 DataNode 节点上,用于调度 Task 的实际运行工作。它内部也会启动一些服务和线程。

 

TaskTracker 也会启动一个 StatusHttpServer 服务来提供 web 界面的查询 Task 执行状态的工具。

 

其次,它还会启动一个 taskReportServer 服务,这个用于提供给它的子进程即 TaskRunner 启动的 MapTask 或者 ReduceTask 向它报告状况,子进程的启动命令实现在 TaskTracker$Child 类中,由 TaskRunner.run() 通过命令行参数传入该服务地址和端口,即调用 TaskTracker 的 getTaskTrackerReportAddress() ,这个地址会在 taskReportServer 服务创建时获得。

 

TaskTracker 也会启动一个 MapEventsFetcherThread 线程用于获取 Map 任务的输出数据信息。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值