皮皮blog

Talk is cheap, Show me the code!

排序:
默认
按更新时间
按访问量

HTML - 字符实体

HTML 字符实体HTML 中的预留字符必须被替换为字符实体。一些在键盘上找不到的字符也可以使用字符实体来替换。HTML 实体在 HTML 中,某些字符是预留的。在 HTML 中不能使用小于号(),这是因为浏览器会误认为它们是标签。如果希望正确地显示预留字符,我们必须在 HTML 源代码中使用字符...

2017-12-29 17:29:58

阅读数:550

评论数:0

HTML - 脚本JavaScript

JavaScript 使 HTML 页面具有更强的动态和交互性。JavaScript 最常用于图片操作、表单验证以及内容动态更新。标签描述定义了客户端脚本定义了不支持脚本浏览器输出的文本HTML 标签 标签用于定义客户端脚本,比如 JavaScript。 元素既可包含脚本语句,也可通过 src ...

2017-12-29 17:23:26

阅读数:267

评论数:0

HTML - 颜色

HTML颜色的表示HTML 颜色由红色、绿色、蓝色混合而成。HTML颜色可以通过颜色值或者颜色RGB或者颜色名来引用。颜色值HTML 颜色由一个十六进制符号来定义,这个符号由红色、绿色和蓝色的值组成(RGB)。每种颜色的最小值是0(十六进制:#00)。最大值是255(十六进制:#FF)。十六进制值...

2017-12-29 17:17:39

阅读数:365

评论数:0

HTML - 布局div

大多数网站可以使用 或者 元素来创建多列。CSS 用于对元素进行定位,或者为页面创建背景以及色彩丰富的外观。Note: table标签是不建议作为布局工具使用的 - 表格不是布局工具。table布局参考[使用 元素的网页布局]。div元素布局div 元素是用于分组 HTML 元素的块级元素。...

2017-12-29 17:03:54

阅读数:375

评论数:0

HTML样式- CSS

CSS简介CSS (Cascading Style Sheets) 用于渲染HTML元素标签的样式。CSS 是在 HTML 4 开始使用的,是为了更好的渲染HTML元素而引入的。CSS 可以通过以下方式添加到HTML中:内联样式- 在HTML元素中使用"style" 属性 内部...

2017-12-29 11:45:04

阅读数:435

评论数:0

HTML - 元素/标签详解

HTML头部元素 元素包含了所有的头部标签元素。在 元素中你可以插入脚本(scripts), 样式文件(CSS),及各种meta信息。可以添加在头部区域的元素标签为: , , , , , , . 标签定义了不同文档的标题。 在 HTML/XHTML 文档中是必须的。定义了浏览器工具栏的标题当网页...

2017-12-29 10:46:44

阅读数:553

评论数:0

HTML - 元素/标签和属性基础

HTML元素简介HTML 文档由 HTML 元素定义。HTML 文档由嵌套的 HTML 元素构成。"HTML 标签" and "HTML 元素" 通常都是描述同样的意思.但是严格来讲, 一个 HTML 元素包含了开始标签与结束标签。开始标签常被称为起始标签(...

2017-12-29 10:45:04

阅读数:393

评论数:0

HTML - 文本及其格式化

HTML 文本格式化HTML 文本格式化标签标签描述定义粗体文本定义着重文字定义斜体字定义小号字定义加重语气定义下标字定义上标字定义插入字定义删除字Note:1. 通常标签 替换加粗标签 来使用, 替换 标签使用。然而,这些标签的含义是不同的: 与 定义粗体或斜体文本。 或者 意味着你要呈现...

2017-12-29 10:07:05

阅读数:723

评论数:0

Sublime功能拓展及插件

Sublime基础功能及拓展中文支持ubuntu16.04中subline text3的中文输入法支持sudo apt-get update && sudo apt-get upgradegit clone https://github.com/lyfeyaj/sublime-te...

2017-12-21 22:20:36

阅读数:828

评论数:0

贝叶斯逻辑回归

待写

2017-12-19 21:33:07

阅读数:277

评论数:0

分类的线性模型:概率判别式模型之逻辑回归LR

逻辑回归Logistic Regression逻辑回归是一种线性分类模型,而不是回归模型。也就是说,输入的因变量target y是离散值,如分类类别1,0等等,而不是连续型的数据。判别式训练的⼀种形式:在直接⽅法中,我们最⼤化由条件概率分布p(Ck j x)定义的似然函数。判别式⽅法的⼀个优点是通...

2017-12-18 11:39:27

阅读数:731

评论数:0

未名

2017-12-18 11:04:11

阅读数:204

评论数:0

深度学习:语言模型的评估标准

http://blog.csdn.net/pipisorry/article/details/78677580 语言模型的评估主要measure the closeness,即生成语言和真实语言的近似度。 Classification accuracy ...

2017-11-30 17:03:38

阅读数:826

评论数:0

深度学习:长短期记忆模型LSTM的变体和拓展

LSTM模型的拓展[Greff, Klaus, et al. "LSTM: A search space odyssey." TNNLS2016] 探讨了基于Vanilla LSTM (Graves & Schmidhube (2005))之上的8个变体,并比较了它们之...

2017-11-13 18:19:16

阅读数:1408

评论数:0

深度学习:自然语言生成-集束搜索beam search和随机搜索random search

http://blog.csdn.net/pipisorry/article/details/78404964集束搜索BeamSearch在sequence2sequence模型中,beam search的方法只用在测试的情况(decoder解码的时候),因为在训练过程中,每一个decoder的输...

2017-10-31 16:31:47

阅读数:13689

评论数:1

条件随机场CRF - 学习和预测

CRF的学习即CRF的参数估计问题。条件随机场模型实际上是定义在时序数据上的对数线性模型(LR模型同样是),其学习方法包括极大似然估计和正则化的极大似然估计。具体的优化实现算法有改进的迭代尺度法IIS、梯度下降法以及拟牛顿法。改进的迭代尺度法(IIS)         已知训练数据集,由此可知经验...

2017-10-30 21:27:08

阅读数:1105

评论数:0

条件随机场CRF - 表示

CRF简介HMM的局限性         1,该模型定义的是联合概率,必须列举所有观察序列的可能值,而这对多数领域来说是比较困难的。         2,基于观察序列中的每个元素都相互条件独立。即:在任何时刻观察值仅仅与状态序列中的一个状态有关。而大多数现实世界中的真是观察序列是有多个相互作用的特...

2017-10-30 21:25:01

阅读数:1341

评论数:0

马尔可夫随机场 MRF

马尔可夫网马尔科夫网是使用无向图描述的图模型,是刻画X上联合分布的一种方法,表示一个分解方式,也表示一组条件独立关系。马尔科夫随机场( Markov random field , MRF),也被称为马尔科夫网络( Markov network )或者无向图模型( undirected graphi...

2017-10-30 19:45:56

阅读数:8206

评论数:3

深度学习:长短期记忆模型LSTM

lstm可以减少梯度消失:[RNN vs LSTM: Vanishing Gradients]LSTM模型(long-short term memmory)长短期记忆模型(long-short term memory)是一种特殊的RNN模型,是为了解决RNN模型梯度弥散的问题而提出的;在传统的RN...

2017-10-27 10:14:05

阅读数:5593

评论数:0

重复未名

from: ref:

2017-10-25 10:19:15

阅读数:327

评论数:0

深度学习:Seq2seq模型

Encoder-Decoder模型和Attention模型。seq2seq是什么?简单的说,就是根据一个输入序列x,来生成另一个输出序列y。seq2seq有很多的应用,例如翻译,文档摘取,问答系统等等。在翻译中,输入序列是待翻译的文本,输出序列是翻译后的文本;在问答系统中,输入序列是提出的问题,而...

2017-10-17 11:04:07

阅读数:1688

评论数:2

深度学习:循环神经网络RNN的变体

双向RNN:BRNN模型(Bidirectional RNN)BRNN不仅接受上一个时刻的隐层输出作为输入,也有接受下一个时刻的隐层输出作为输入;Structure of a bidirectional recurrent neural network as described by Schust...

2017-10-16 09:09:52

阅读数:1458

评论数:0

递推关系中的数列通项

http://blog.csdn.net/pipisorry/article/details/78142983普通方法叠加法/叠乘法公式法阶差法待定系数法辅助数列法归纳、猜想倒数法[求解数列通项公式的常用方法]某小皮特征方程法(一阶线性递推式)设已知数列的项满足,其中求这个数列的通项公式?特征方程...

2017-09-30 15:14:50

阅读数:563

评论数:0

有放回采样和无放回采样

随机采样可以分为随机欠采样和随机过采样两种类型。随机欠采样顾名思义即从多数类$S_maj$中随机选择少量样本$E$再合并原有少数类样本作为新的训练数据集,新数据集为$S_min+E$;随机欠采样有两种类型分别为有放回和无放回两种,无放回欠采样在对多数类某样本被采样后不会再被重复采样,有放回采样则有...

2017-09-26 10:09:44

阅读数:4974

评论数:0

不平衡数据的机器学习

不平衡数据的场景出现在互联网应用的方方面面,如搜索引擎的点击预测(点击的网页往往占据很小的比例),电子商务领域的商品推荐(推荐的商品被购买的比例很低),信用卡欺诈检测,网络攻击识别等等。问题定义那么什么是不平衡数据呢?顾名思义即我们的数据集样本类别极不均衡,以二分类问题为例,假设我们的数据集是$S...

2017-09-26 09:13:40

阅读数:3638

评论数:0

Sigmod/Softmax变换

http://blog.csdn.net/pipisorry/article/details/77816624Logistic/Softmax变换sigmoid函数/Logistic 函数取值范围为(0,1),它可以将一个实数映射到(0,1)的区间,可以用来做二分类。sigmoid 的导数表达式为...

2017-09-03 11:39:32

阅读数:2843

评论数:2

深度学习:循环神经网络RNN

http://blog.csdn.net/pipisorry/article/details/77776743RNN模型循环神经网络(recurrent neural network,RNN)是一种具有反馈结构的神经网络,其输出不但与当前输入和网络的权值有关,而且也与之前网络的输入有关;RNN通过...

2017-09-01 19:49:34

阅读数:2003

评论数:0

深度学习:卷积神经网络CNN变体

带步幅的多通道巻积很多时候,我们输入的是多通道图像。如RGB三通道图像,下图就是。也有可能我们出于特定目的,将几张图组成一组一次性输入处理。多通道巻积假定我们有一个 4 维的核张量 K,它的每一个元素是 K i,j,k,l ,表示输出中处于通道 i 的一个单元和输入中处于通道 j 中的一个单元的连...

2017-08-02 11:31:21

阅读数:450

评论数:0

深度学习:卷积神经网络CNN

Convolutional Neural Networks卷积神经网络       卷积神经网络是人工神经网络的一种,已成为当前语音分析和图像识别领域的研究热点。它的权值共享网络结构使之更类似于生物神经网络,降低了网络模型的复杂度,减少了权值的数量。该优点在网络的输入是多维图像时表现的更为明显,使...

2017-08-02 10:09:20

阅读数:921

评论数:0

未名

2017-07-27 09:50:40

阅读数:2490

评论数:0

深度学习:词嵌入word2vec

http://blog.csdn.net/pipisorry/article/details/76147604 word2vec简介 深度学习在自然语言处理中第一个应用:训练词嵌入。通过词嵌入的词表示方式,大量的nlp领域的任务都得到了提升。Google 的 Tomas Mik...

2017-07-26 15:24:57

阅读数:1530

评论数:0

深度学习:Embedding

One-hot Embedding假设一共有个物体,每个物体有自己唯一的id,那么从物体的集合到有一个trivial的嵌入,就是把它映射到中的标准基,这种嵌入叫做One-hot embedding/encoding.应用中一般将物体嵌入到一个低维空间 ,只需要再compose上一个从到的线性映射就...

2017-07-26 11:08:06

阅读数:11194

评论数:11

回归的正则化模型:岭回归和Lasso回归(套索回归)

http://blog.csdn.net/pipisorry/article/details/52974495回归可能存在的问题多重共线性(Multicollinearity)是指线性回归模型中的解释变量之间由于存在精确相关关系或高度相关关系而使模型估计失真或难以估计准确。皮皮blog岭回归 Ri...

2017-07-25 19:36:44

阅读数:574

评论数:0

深度学习:正则化

训练神经网络模型时,如果训练样本较少,为了防止模型过拟合,Dropout可以作为一种trikc供选择。Dropout是hintion最近2年提出的,源于其文章Improving neural networks by preventing co-adaptation of feature detec...

2017-07-18 15:54:15

阅读数:583

评论数:0

回归的线性模型

http://blog.csdn.net/pipisorry/article/details/73770637线性基函数回归模型基函数线性回归模型的最简单的形式也是输入变量的线性函数。但是,通过将一组输入变量的非线性函数进行线性组合,我们可以获得一类更加有用的函数,被称为基函数( basis fu...

2017-07-08 11:29:32

阅读数:1050

评论数:0

平面几何和立体几何

http://blog.csdn.net/pipisorry/article/details/73294222平面几何余弦定理和勾股定理余弦定理和勾股定理的几何图形解释[震惊!余弦定理和勾股定理竟然有这样的关系]点间距离、点线距离、线间距离两点间的距离已知平面上两点P1(x1,y1), P2(x2...

2017-06-15 17:21:25

阅读数:1142

评论数:0

算法:位运算

http://blog.csdn.net/pipisorry/article/details/70318778位操作基础位操作是程序设计中对位模式或二进制数的一元和二元操作。lz所以3进制在一般计算机应该不能进行位操作吧。基本的位操作符有与、或、异或、取反、左移、右移这6种,它们的运算规则如下所示...

2017-06-08 10:37:57

阅读数:1011

评论数:0

三个盒子装金币问题

http://blog.csdn.net/pipisorry/article/details/72859426问题有三个盒子,只有 一个里面装有金币。你随机抽取一个;然后有人告诉你,剩下的两个盒子中,他随机的打开了一个,发现里面是空的;然后他问你,要不要把你的盒子和另一个未打开的盒子交换?解答这个...

2017-06-04 16:20:15

阅读数:1124

评论数:0

数据散布的度量

http://blog.csdn.net/pipisorry/article/details/72820982考察评估数值数据散布或发散的度量。这些度量包括极差、分位数、四分位数、百分位数和四分位数极差。五数概括可以用盒图显示,它对于识别离群点是有用的。方差和标准差也可以指出数据分布的散布。集中趋...

2017-05-31 16:35:46

阅读数:2105

评论数:0

时钟问题

http://blog.csdn.net/pipisorry/article/details/72764547时钟问题1.行程问题中时钟的标准制定;2.时钟的时针与分针的追及与相遇问题的判断及计算;3.时钟的周期问题。时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分...

2017-05-26 11:11:00

阅读数:522

评论数:0

格雷码Gray Code

http://blog.csdn.net/pipisorry/article/details/72356418格雷码简介  在一组数的编码中,若任意两个相邻的代码只有一位二进制数不同,则称这种编码为格雷码(Gray Code),另外由于最大数与最小数之间也仅一位数不同,即“首尾相连”,因此又称循环...

2017-05-18 11:02:47

阅读数:3679

评论数:0

C++:函数指针

http://blog.csdn.net/pipisorry/article/details/72458168函数指针函数存放在内存的代码区域内,它们同样有地址。如果我们有一个int test(int a)的函数,那么,它的地址就是函数的名字,如同数组的名字就是数组的起始地址。1、函数指针的定义方...

2017-05-18 10:33:38

阅读数:456

评论数:0

C++:模板

http://blog.csdn.net/pipisorry/article/details/72353250C++ 模板模板是泛型编程的基础,泛型编程即以一种独立于任何特定类型的方式编写代码。模板是创建泛型类或函数的蓝图或公式。库容器,比如迭代器和算法,都是泛型编程的例子,它们都使用了模板的概念...

2017-05-16 21:14:14

阅读数:525

评论数:0

C++ 函数

http://blog.csdn.net/pipisorry/article/details/72353172定义函数C++ 中的函数定义的一般形式如下: return_type function_name( parameter list ){ body of the function}在 C...

2017-05-16 21:07:30

阅读数:429

评论数:0

Python模块:bisect二分算法模块

http://blog.csdn.net/pipisorry/article/details/72307432Bisect模块简介Python 的列表(list)内部实现是一个数组,也就是一个线性表。在列表中查找元素可以使用 list.index() 方法,其时间复杂度为O(n)。对于大数据量,则...

2017-05-16 19:03:10

阅读数:748

评论数:0

Linux: 系统设置与备份策略

http://blog.csdn.net/pipisorry/article/details/72123258系统基本设置网络设置 (手动设置与DHCP自动取得)日期与时间设置语系设置LANG 与 locale 的指令能够查询目前的语系数据与变量, /etc/locale.conf 其实就是语系的...

2017-05-15 16:59:05

阅读数:702

评论数:0

Linux:网络安全与主机基本防护:限制端口, 网络升级与 SELinux

http://blog.csdn.net/pipisorry/article/details/72123815系统基本设置网络设置 (手动设置与DHCP自动取得)目前的主流网卡为使用以太网络协定所开发出来的以太网卡 (Ethernet),因此我们 Linux 就称呼这种网络接口为 ethN (N ...

2017-05-15 16:53:52

阅读数:1025

评论数:1

Linux:Linux常用网络指令

http://blog.csdn.net/pipisorry/article/details/72123888网络参数设定使用的指令ifconfig :查询、设定网络卡与 IP 网域等相关参数;ifup, ifdown:这两个档案是 script,透过更简单的方式来启动网络接口;route ...

2017-05-15 15:12:16

阅读数:1528

评论数:0

深度学习:梯度消失和梯度爆炸

梯度消失主要是因为网络层数太多,太深,导致梯度无法传播。本质应该是激活函数的饱和性。[神经网络中的激活函数 ]DNN结果出现nan值?梯度爆炸,导致结果不收敛。都是梯度太大惹的祸,所以可以通过减小学习率(梯度变化直接变小)、减小batch size(累积梯度更小)、 features...

2017-05-13 19:32:36

阅读数:1157

评论数:0

未名

2017-05-13 19:31:11

阅读数:117

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭