Win10 Anaconda3 深度学习环境搭建

1.Anaconda3 安装

Anaconda3下载网址: https://www.anaconda.com/distribution/
选择Windows版本,再根据电脑的32/64位,选择对应版本的安装包(本例选择windows 64位)。
在这里插入图片描述
双击解压安装包,进行安装。安装结束后,检验Anaconda3是否安装成功。打开开始栏,找到最近添加的Anaconda3(64-bit)文件夹,打开文件夹下的Anaconda Prompt(Anaconda)。
在这里插入图片描述
输入 conda -V,查看 conda 版本;输入 python,可以查看当前 python 的版本,当 python 中包含 Anaconda 表明 Anaconda 环境成功添加。
在这里插入图片描述

【注】此时出现的 >>> 表示已经进入了 python 编辑器交互模式,可以输入 exit() 来退出编辑器返回终端环境。

2.虚拟环境搭建

2.1创建环境

可以在 anaconda 软件中创建,或者在控制台(终端)输入:

conda create -n name python==3.7

-----name为所搭建环境命名,python后的版本号根据兼容性自行设置,这里默认python3.7版本。-----

2.2删除环境

conda remove -n name --all

2.3进入指定环境(激活环境)

conda activate name

在这里插入图片描述
系统环境默认为base环境下,当需要进入设置好的环境则进行激活,当退出环境时则进行deactivate即退回base环境。

3.安装所需包

------在指定虚拟环境下安装的包,仅在该虚拟环境下生效。-----

3.1安装 tensorflow-gpu 1.14.0 版本

conda install tensorflow-gpu==1.14.0

(cuda9.0、cudnn7 会自动安装,无需另外添加)
安装tensorflow-gpu完成后,可在pycharm中进行检验是否成功安装。

import tensorflow as tf
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
print(tf.test.is_gpu_available())

输出为True则安装成功;若输出为False,则需要对Error进行查询修改,也可直接删除tensorflow-gpu,再重新安装。
**加粗样式**

3.2安装 keras 2.2.4版本

conda install keras==2.2.4

3.3安装 pytorch1.2.0版本

conda install pytorch1.2.0 torchvision0.4.0 -c pytorch

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值