我想要积分

我以前的积分去哪里了?我想问问,我不是还有很多积分的么?
为什么清空了也不告诉我?

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
好的,下面是求解微分方程(y-1-xy)dx+x*dy=0的过程: 首先,我们需要确定该微分方程是否为恰当微分方程。通过计算该微分方程的偏导数,我们得到: ∂(y-1-xy)/∂y = 1-x ∂(x)/∂x = 1 因为 ∂(y-1-xy)/∂y 不等于 ∂(x)/∂x,所以该微分方程不是恰当微分方程。 接下来,我们需要寻找积分因子,使得将该积分因子乘到微分方程的每一项中后,可以使该微分方程变为恰当微分方程。 积分因子的一般形式为 μ(x,y),我们需要找到 μ(x,y) 使得: μ(x,y)*∂(y-1-xy)/∂y - μ(x,y)*x + μ(x,y)*∂(x)/∂x*y = 0 其中,∂(y-1-xy)/∂y 和 ∂(x)/∂x*y 是该微分方程的两个不恰当项。 我们发现,该式可以写成: (μ(x,y)*y)*∂(x)/∂x + (μ(x,y)*(1-x))*∂(y)/∂y - μ(x,y) = 0 这是一个恰当微分方程的形式,我们需要找到 μ(x,y) 使得该式成立。 我们注意到,(μ(x,y)*y) 和 (μ(x,y)*(1-x)) 是该微分方程的两个不恰当项,因此我们可以分别令它们的偏导数相等,得到两个方程: ∂(μ(x,y)*y)/∂y = ∂(μ(x,y)*(1-x))/∂x 通过对右式关于 x 求偏导数,对左式关于 y 求偏导数,然后将它们相等,得到: y*∂(μ(x,y))/∂y - (1-x)*∂(μ(x,y))/∂x = μ(x,y)*∂(y)/∂x - ∂(x)/∂x*μ(x,y) 将微分方程带入上式,得到: y*∂(μ(x,y))/∂y - x*μ(x,y) = 0 这是一个一阶线性微分方程,我们可以使用分离变量法来解它。将式子变形得到: dμ(x,y)/μ(x,y) = x/y dy 对两边同时积分,得到: ln|μ(x,y)| = 1/2x^2 + C 其中,C 是一个常数。将 e 的幂次形式应用于上式,得到: μ(x,y) = e^(1/2x^2 + C) 因此,积分因子为 μ(x,y) = e^(1/2x^2 + C)。 接下来,我们将积分因子乘到微分方程的每

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

2HuoDuan

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值