网上找的约瑟夫问题的代码,自己理解了一遍,多加了一些注释。方便以后复习
据说著名犹太历史学家 Josephus有过以下的故事:在罗马人占领乔塔帕特后,39 个犹太人与Josephus及他的朋友躲到一个洞中,39个犹太人决定宁愿死也不要被敌人抓到,于是决定了一个自杀方式,41个人排成一个圆圈,由第1个人开始报数,每报数到第3人该人就必须自杀,然后再由下一个重新报数,直到所有人都自杀身亡为止。然而Josephus 和他的朋友并不想遵从。
首先从一个人开始,越过k-2个人(因为第一个人已经被越过),并杀掉第k个人。接着,再越过k-1个人,并杀掉第k个人。这个过程沿着圆圈一直进行,直到最终只剩下一个人留下,这个人就可以继续活着。问题是,给定了和,一开始要站在什么地方才能避免被处决?Josephus要他的朋友先假装遵从,他将朋友与自己安排在第16个与第31个位置,于是逃过了这场死亡游戏。
/**
* 实现约瑟夫问题的方法
* @param sum 总人数
* @param n 报数报到n的人自杀
*/
public static void get(int sum, int n) {
//将人数放到List集合中方便删除指定元素,指定元素就表示被杀死的人
List<Integer> strs= new ArrayList<Integer>();
for (int i = 0; i < sum; i++) {
strs.add(i + 1);
}
int i=0; //下标
while (strs.size() > 1) {
/*
* 数到n的数字移出去。当一个人数到n,就将他的下标设置成0,并删除它
* 这样他的下一个数就会自动往前移动,下标变为0
*/
if(n==i+1){
i=0;//重新开始数
System.out.println("每次死去的人:"+strs.remove(i));
}
//把第一个移动到最后一个,就相当于跳过了一个人。如果没有执行if语句,就相当于把跳过的第二个人移到了最后
strs.add(strs.remove(0));
i++; //跳过第二个人
}
System.out.println("最后活着的人:"+strs.remove(0));//输出最后一个数字
}
}
注意:
List每remove掉一个元素以后,后面的元素都会自动向前移动。
remove方法会返回被删除的元素。