KIDx的解题报告
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4170
题意:飞机在位置(x0,y0), 飞行速度为v km/h,
有N(0<N<8)艘潜艇分别为(px[i],py[i])速度向量为(vx[i],vy[i])km/h,坐标单位为km
飞机必须在每艘潜艇上要一小时卸载货物,最后飞回原来的位置(x0,y0),求最少时间花费,用时分秒输出。
解析:
n很小,可以暴力枚举全排列进行模拟,重点是如何求出飞机与潜艇的最小相遇时间:(化简成一元二次方程求解即可)
#include <iostream>
#include <algorithm>
#include <math.h>
using namespace std;
#define M 10
#define eps 1e-8
struct point{
double x, y;
};
double dis (point a, point b)
{
return sqrt ((a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y));
}
int main()
{
point ini, S, p[M], s[M];
int n, cc = 0, i, j, k, vx[M], vy[M], v, id[M];
double ans, tp;
while (scanf ("%d", &n), n)
{
for (i = 0; i < n; i++)
scanf ("%lf%lf%d%d", &s[i].x, &s[i].y, vx+i, vy+i);
scanf ("%lf%lf%d", &ini.x, &ini.y, &v);
for (i = 0; i < n; i++) id[i] = i;
//暴力枚举全排列进行模拟
ans = -1;
do {
for (i = 0; i < n; i++) p[i] = s[i];
S = ini;
//上面是一次模拟的初始化
tp = 0;
for (i = 0; i < n; i++)
{
k = id[i];
//计算飞机从S飞到p[K]的最少时间
double dt, a, b, c, A, B;
A = p[k].x - S.x;
B = p[k].y - S.y;
a = vx[k]*vx[k] + vy[k]*vy[k] - v*v;
b = 2 * (A*vx[k] + B*vy[k]);
c = A*A + B*B;
if (fabs (a) < eps) dt = -c/b;
else
{
dt = (-b + sqrt (b*b - 4*a*c)) / (2*a);
if (dt < 0) dt = (-b - sqrt (b*b - 4*a*c)) / (2*a);
}
dt += 1.0; //一个小时卸货
for (j = i; j < n; j++) //所有潜艇走了dt的时间,更新他们的坐标
{
p[id[j]].x += dt * vx[id[j]];
p[id[j]].y += dt * vy[id[j]];
}
S = p[k]; //飞机现在在p[K]上准备飞往下一个地点
tp += dt;
}
tp += dis (S, ini) / v; //飞回基地
if (ans < 0 || tp < ans) ans = tp; //更新最小值
} while (next_permutation (id, id+n));
int h, m, s;
//题目信息:The time should be rounded up to the next second.
s = int (ans*3600 + 0.99999);
m = s / 60; s %= 60;
h = m / 60; m %= 60;
printf ("Case %d: %d hour(s) %d minute(s) %d second(s)\n",
++cc, h, m, s);
}
return 0;
}