跟波利亚学解题(rev#3)

跟波利亚学解题(rev#3)

 

By 刘未鹏(pongba)

C++的罗浮宫(http://blog.csdn.net/pongba)

TopLanguage(http://groups.google.com/group/pongba)

 

一些故事

波利亚在他著名的《How To Solve It》中讲了这么一个有趣的心理学实验:  

用一个缺了一条边的正方形围栏围住一只动物(狗、黑猩猩、母鸡、人类婴儿),在围栏的另一侧放上一个被试很想要的物体(对动物来说是食物,对人类婴儿来说是有趣的玩具),然后观察他们各自的行为。发现,狗在扒着围栏吠了几声发现无法通过的时候,不久便学会了从围栏的缺口的那一边绕出去,母鸡则朝着围栏一个劲的扑腾,不会想到绕弯子。此外,人类婴儿很快就学会了绕过障碍;而黑猩猩也学得很快(黑猩猩是和人类最近的灵长类亲属)。这个实验有力的证明了,动物解决问题的能力是进化而来的、天生的、硬编码在大脑的神经元网络里面的。

事实上,不仅解决问题方面是如此,人类整个认知系统中绝大部分功能从本质上都是硬编码的,能在后天习得的只是“程度”的不同,而不是“本质”的不同。《动机心理学》中有一个令人印象深刻的一个例子:

先给小鼠喝某种甜味水(称为“可口水”),然后用X射线促使其产生反胃感,能使小鼠形成对这种味道的水的厌恶和回避(经典条件反射)。但如果不是在水里面加味道,而是在它喝水的时候伴随强光刺激(即让它喝“光噪水”),然后同样刺激其反胃,却无法使它养成对“光噪水”的厌恶。另一方面,如果不是促使其反胃(身体不适),而是用电击惩罚,则它无法形成对“可口水”的厌恶,而是形成对“光噪水“的厌恶。显然,小鼠对事件之间的关联的归因也具有着某种硬编码好了的倾向。在这个例子中,老鼠的大脑里面硬编码了“将身体不适(内部事件)归因于食物而不是闪光”、”将电击(外部事件)归因于闪光而非食物” 这种逻辑。

而人类也有类似的归因倾向。金出武雄在《像外行一样思考,像专家一样实践》中也提到,他认为人类的直觉实际上也是计算,捷径式的计算,只不过由于我们目前还不了解人类大脑内神经元的全部结构(或者说“感性”的物质基础)这才把“感性”当成人类所特有的;金出武雄的这种观点跟心理学中的认知捷径不谋而合。实际上,越是高等的动物,大脑中用于处理特定问题的硬编码神经元回路就越是多和复杂。例如,达尔文早在《人类和动物的情绪表达》中就先知先觉的提出了动物情绪的适应价值;《Mean Genes》列出了用于解决生存繁衍问题的特定认知倾向;《决策与判断》里面则列出了人类在解决更具一般性的决策问题中的一些系统性的、可预测的认知偏差;而《Predictably Irrational》更是把这个认识提高到方法论的层面,主张人类的非理性实际上是完全可预知的。事实上,所有这些观点都建立在一个基本事实的基础上,即人类大脑中的千亿神经元是由在漫长的进化过程中被塑造出来的分工明确的、ad hoc的一组子系统构成的。

越是高等的动物,解题能力越高,猩猩能够进行某种顿悟,在脑子里就构想出通过堆放墙角的箱子来帮助获取高高吊着的香蕉;而出于进化之树 顶端的人类则具有非比寻常的大脑,在人类整个进化的过程中,解决问题的能力一直在进化,所以说人脑中的神经元最重要的部分是为了解题而存在的也不为过。不同的人只是在解题能力程度上不同,并没有本质上能与不能的差异。

波利亚在《How To Solve It》中另外还举了下面这个例子:

一个原始人站在一条小溪前,他想要越过这条小溪,但溪水经过昨天一夜,已经涨了上来;因此他面临一个问题:如何越过这条小溪。他联想起以前曾经从一棵倒下并横在河上的树木上走过去,于是他的问题变成了如何找到这样一颗倒下并横在溪流上的树木。他环顾四周,发现溪流上没有这样的横着的树木,但他发现周围倒是有不少生长着的树木;于是问题再次变成了:如何使这些树木躺到溪流上。

在这个想像的故事中我们看到了一个问题是如何被一步步归约的:首先,原始人通过对一个已知的类似问题的联想认识到一个重要的性质:如果有一棵树横在河上,我就可以借助这棵树过河。这就将一个无法直接解决的问题转化为了一个新的、已知的、并容易解决的问题。值得注意的是这里“联想”是极其重要的一个环节,联想可以将手上的问题与已知的类似问题联系起来,并从后者中吸取能够利用的方法。联想也能够将与问题有关的定理或性质从大脑的知识系统中提取出来。基本上,如果一个联想能够得到某个性质,而这个性质能够或者将问题往上归约一层,或者将条件往下推导一层,这个联想就是有用的。事实上,如果你仔细注意以下解题的过程,你也许会发现,所有的启发式思维方法(heuristics)实质上都是为了联想服务的,而联想则是为了从我们大脑的知识系统中提取出有价值的性质或定理,从而补上从条件到结论、从已知到未知之间缺失的链环。

一段历史

实际上,人类自从进入理性文明以来,不仅在不断的解题,还在不断的对自身的解题方法进行反省和总结。在这条路上,有一个真正光荣与辉煌的梦想,那就是发现人类解题的所有一般性法则,并借此建造出一台能够解决人类能够解决的所有问题的一般解题机。与物理中的建造永动机不一样,这个梦想并非遥不可及的,自从古希腊哲学家对人类心智的反省思考以来,许多著名的数学和哲学家为此建造了阶梯,Pappus,亚历山大学派最后一位伟大的几何学家,就曾在他恢弘的八卷本《数学汇编》中描述了其中的一种法则,他将它称为“分析与综合”,大意如下:

首先我们把需要求解的问题本身当成条件,从它推导出结论,再从这个结论推导出更多的结论,直到某一个点上我们发现已经出现了真正已知的条件。这个过程称为分析。有了这条路径,我们便可以从已知条件出发,一路推导到问题的解。

波利亚在他的三卷本中把这种做法叫做Working Backwards(倒过来解)。

笛卡尔也曾经试图将人类思维的规则总结为36条(最终完成了21条)。莱布尼兹,现代计算机实质上的发明者,也说到:

在我看来,没有什么能比探索发明的源头还要重要,它远比发明本身更重要。

再后来,捷克数学家波尔查诺也试图总结人类思维的本质规律,他在他的著作《科学的理论》中写道:

我根本不奢望自己能够提供任何超于其他天才所使用过的科学探索方法之外的新方法,从这个意义上,你别指望能在书中看到什么新的东西。但是,我会尽我的全力去总结所有伟大的思想者们共有的、思维的原则和方法,我认为即便是他们自己在思考的时候也未必全都意识到自己在使用什么方法。

再后来,就到了近代,随着科学技术的进步,心理学最活跃的子学科——认知科学——开始辉煌起来,人类开始向思维乃至自我意识的物质基础发起进攻。两位多才多艺的计算机科学家兼认知科学家,Herbert Simon(另外还是经济学家)和Allen Newell写出了世界上第一个一般性解题机的程序(GPS),虽然GPS只能解决很狭窄的一类问题,但这是第一个将“问题解决策略”和“知识”分离开来的程序。显然,在知识之外,人类的思维是有着一些一般性的指导规则的。事实上,波利亚在《数学与猜想》中写道,欧拉是最重数学思维的教学的,欧拉认为如果不能把解决数学问题背后的思维过程教给学生的话,数学教学就是没有意义的。

一些方法

这些一般性的思维方法,就是波利亚用了整整三本书,五卷本(

评论 54
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值