扫地机器人技术方案设计
一、硬件系统架构
-
MCU选型
- 主控:STM32H743(双核Cortex-M7,480MHz)
- 协处理器:ESP32-C6(WiFi6/BLE5.3)
$$ \text{性能指标} = \frac{\text{计算能力}}{\text{功耗}} \times \text{实时性系数} $$
-
NPU加速
- 瑞芯微RK1108(1TOPS算力)用于实时SLAM建图
# NPU推理示例 import rknn model = rknn.load_model('slam_model.rknn') output = model.infer(lidar_data) -
传感器配置
类型 型号 接口 用途 激光雷达 RPLIDAR A1 UART 环境测绘 IMU MPU6050 I2C 姿态校正 悬崖传感器 TCRT5000 GPIO 防跌落 -
无线模块
- 双模通信架构:
$$ \begin{cases} \text{WiFi} & \text{用于云端交互} \ \text{Zigbee} & \text{本地设备联动} \end{cases} $$
- 双模通信架构:
-
电源管理
- 动态电压调节算法:
$$ V_{core} = 3.3V - 0.1 \times \frac{T_{cpu}}{85} $$
- 动态电压调节算法:
二、软件分层架构
graph TD
A[应用层] --> B[业务逻辑层]
B --> C[服务抽象层]
C --> D[硬件驱动层]
-
硬件抽象层(HAL)
// 电机驱动抽象 typedef struct { void (*set_speed)(uint8_t pwm); int (*read_encoder)(void); } MotorDriver; -
状态机引擎
states = {'探索', '清扫', '回充', '错误处理'} transitions = [ {'trigger': '障碍物', 'source': '清扫', 'dest': '探索'}, {'trigger': '低电量', 'source': '*', 'dest': '回充'} ]
**三、通信驱动设计
-
协议栈分层
层级 协议 封装格式 应用层 MQTT JSON 传输层 Modbus RTU帧 物理层 RS485 字节流 -
数据压缩算法
- 采用Delta编码压缩路径数据:
$$ P_{compressed} = (x_1, y_1, \Delta x_2, \Delta y_2, ...) $$
- 采用Delta编码压缩路径数据:
四、UI交互系统
-
框架选择
- 嵌入式GUI:LVGL + TouchGFX混合架构
- 渲染性能优化:
$$ \text{FPS} \geq 30 \quad \text{当} \quad \text{UI对象} < 50 $$
-
界面组件示例
lv_obj_t *btn = lv_btn_create(lv_scr_act()); lv_obj_add_event_cb(btn, start_clean_cb, LV_EVENT_CLICKED, NULL);
五、依赖框架
├── RTOS # FreeRTOS v10.4
├── SLAM # Cartographer
├── Wireless # ESP-IDF v5.1
├── PowerMgr # LTC4015驱动
└── UI_Framework # LVGL v8.3
六、学习曲线评估
| 模块 | 上手时间 | 精通时间 | 关键难点 |
|---|---|---|---|
| NPU开发 | 2周 | 3个月 | 算子优化 |
| SLAM算法 | 1个月 | 6个月 | 闭环检测 |
| 无线协议 | 1周 | 1个月 | 抗干扰处理 |
完整方案实现路径
- 硬件平台搭建 → 2. 驱动层开发 → 3. SLAM核心移植 → 4. 业务逻辑集成 → 5. 云平台对接 → 6. 测试验证
注:示例代码需配合具体硬件调试,建议通过模块化设计降低耦合度。
207

被折叠的 条评论
为什么被折叠?



