什么是角点?
角点就是极值点,即在某方面属性特别突出的点。当然,你可以自己定义角点的属性(设置特定熵值进行角点检测)。角点可以是两条线的交叉处,也可以是位于相邻的两个主要方向不同的事物上的点。角点通常被定义为两条边的交点,或者说,角点的局部邻域应该具有两个不同区域的不同方向的边界。常见的角点有:
- 灰度梯度的最大值对应的像素点;
- 两条直线或者曲线的交点;
- 一阶梯度的导数最大值和梯度方向变化率最大的像素点;
- 一阶导数最大,二阶导数为零的像素点(指示物体边缘变化不连续的方向)。
为什么要检测角点?
角点是图像很重要的特征,对图像图形的理解和分析有很重要的作用。角点在保留图像图形重要特征的同时,可以有效地减少信息的数据量,使其信息的含量很高,有效地提高了计算的速度,有利于图像的可靠匹配,使得实时处理成为可能。角点在三维场景重建、运动估计、目标跟踪、目标识别、图像配准与匹配等计算机视觉领域起着非常重要的作用。
Harris角点检测
人眼对角点的识别通常是在一个局部的小区域或小窗口完成的。如果在各个方向上移动这个特征的小窗口,窗口内区域的灰度发生了较大的变化,那么就认为在窗口内遇到了角点。如果这个特定的窗口在图像各个方向上移动时,窗口内图像的灰度没有发生变化,那么窗口内就不存在角点;如果窗口在某一个方向移动时,窗口内图像的灰度发生了较大的变化,而在另一些方向上没有发生变化,那么,窗口内的图像可能就是一条直线的线段。
Harris角点检测原理用公式演算如下:
E
(
u
,
v
)
=
∑
x
,
y
w
(
x
,
y
)
[
I
(
x
+
u
,
y
+
v
)
−
I
(
x
,
y
)
]
2
=
∑
x
,
y
w
(
x
,
y
)
[
I
(
x
,
y
)
+
I
x
u
+
I
y
v
+
O
(
u
2
,
v
2
)
−
I
(
x
,
y
)
]
2
≈
∑
x
,
y
w
(
x
,
y
)
[
I
x
u
+
I
y
v
]
2
=
∑
x
,
y
w
(
x
,
y
)
[
u
2
I
x
2
+
2
u
v
I
x
I
y
+
v
2
I
y
2
]
=
∑
x
,
y
w
(
x
,
y
)
[
u
v
]
[
I
x
2
I
x
I
y
I
x
I
y
I
y
2
]
[
u
v
]
=
[
u
v
]
(
∑
x
,
y
w
(
x
,
y
)
[
I
x
2
I
x
I
y
I
x
I
y
I
y
2
]
)
[
u
v
]
E(u,v)= \sum_{x,y}w(x,y)[I(x+u,y+v)-I(x,y)]^2 \\ =\sum_{x,y}w(x,y)[I(x,y)+I_xu+I_yv+O(u^2,v^2)-I(x,y)]^2 \\ \approx\sum_{x,y}w(x,y)[I_xu+I_yv]^2 \\ =\sum_{x,y}w(x,y)[u^2I_x^2+2uvI_xI_y+v^2I_y^2]\\ =\sum_{x,y}w(x,y)\begin{bmatrix}u & v\end{bmatrix}\begin{bmatrix} I_x^2 & I_xIy \\ I_xI_y & I_y^2\end{bmatrix}\begin{bmatrix}u \\ v\end{bmatrix}\\ =\begin{bmatrix}u & v\end{bmatrix}(\sum_{x,y}w(x,y)\begin{bmatrix} I_x^2 & I_xIy \\ I_xI_y & I_y^2\end{bmatrix})\begin{bmatrix}u \\ v\end{bmatrix}
E(u,v)=x,y∑w(x,y)[I(x+u,y+v)−I(x,y)]2=x,y∑w(x,y)[I(x,y)+Ixu+Iyv+O(u2,v2)−I(x,y)]2≈x,y∑w(x,y)[Ixu+Iyv]2=x,y∑w(x,y)[u2Ix2+2uvIxIy+v2Iy2]=x,y∑w(x,y)[uv][Ix2IxIyIxIyIy2][uv]=[uv](x,y∑w(x,y)[Ix2IxIyIxIyIy2])[uv]
用M代替中间内容:
E
(
u
,
v
)
=
[
u
v
]
M
[
u
v
]
E(u,v)=\begin{bmatrix}u & v\end{bmatrix}M\begin{bmatrix}u \\ v\end{bmatrix}
E(u,v)=[uv]M[uv]
其中
M
=
∑
x
,
y
w
(
x
,
y
)
[
I
x
2
I
x
I
y
I
x
I
y
I
y
2
]
I
x
,
I
y
分
别
为
窗
口
内
像
素
点
(
x
,
y
)
在
x
方
向
上
和
y
方
向
上
的
梯
度
值
。
M=\sum_{x,y}w(x,y)\begin{bmatrix} I_x^2 & I_xIy \\ I_xI_y & I_y^2\end{bmatrix}\\ I_x,I_y分别为窗口内像素点(x,y)在x方向上和y方向上的梯度值。
M=x,y∑w(x,y)[Ix2IxIyIxIyIy2]Ix,Iy分别为窗口内像素点(x,y)在x方向上和y方向上的梯度值。
其中w(x,y)表示滑动窗口权重函数,可以是常数也可以是高斯函数。E(u,v)表示滑动窗口向各个方向移动时像素值衡量系数的变化。
定义Harris角点评价系数R:
R
=
d
e
t
(
M
)
−
k
(
t
r
a
c
e
(
M
)
)
2
d
e
t
(
M
)
=
λ
1
λ
2
t
r
a
c
e
(
M
)
=
λ
1
+
λ
2
R=det(M)-k(trace(M))^2 \\ det(M)=λ_1λ_2 \\ trace(M)=λ_1+λ_2 \\
R=det(M)−k(trace(M))2det(M)=λ1λ2trace(M)=λ1+λ2
这里λ1,λ2是矩阵M的2个特征值,k是一个指定值,这是一个经验参数,需要实验确定它的合适大小,通常它的值在0.04和0.06之间,它的存在只是调节函数的形状而已。R取决于M的特征值,对于角点|R|很大,平坦的区域|R|很小,边缘的R为负值;
API
public static void cornerHarris(Mat src, Mat dst, int blockSize, int ksize, double k, int borderType)
- 参数一:src,输入源图像。必须是单通道8U或者32F类型。
- 参数二:dst,输出评价系数R的矩阵。尺寸与src相同,类型为单通道32F。
- 参数三:blockSize,领域大小。
- 参数四:ksize,Sobel算子的半径。
- 参数五:k,计算Harris评价系数R的权重系统。
- 参数六:borderType,像素外推算法标志位。
dst为评价系数R的输出矩阵,由于评价系数有正有负且范围较广,计算结束后通常需要进行归一化处理。然后通过经验阈值比较判断像素点是否为Harris角点。阈值越大,提取的Harris角点越少,阈值越小,提取的Harris角点越多。
操作
/**
* Harris角点检测
* author: yidong
* 2020/12/30
*/
class HarrisActivity : AppCompatActivity() {
private val mBinding: ActivityHarrisBinding by lazy {
ActivityHarrisBinding.inflate(layoutInflater)
}
private val gray by lazy {
this.getBgrFromResId(R.drawable.lena).toGray()
}
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(mBinding.root)
mBinding.ivLena.showMat(gray)
wrapCoroutine({ showLoading() }, { doCornerHarris() }, { hideLoading() })
}
private fun doCornerHarris() {
val dst = Mat()
val dstNorm = Mat()
val dstNormal8U = Mat()
Imgproc.cornerHarris(gray, dst, 2, 3, 0.04)
Core.normalize(dst, dstNorm, 0.0, 255.0, Core.NORM_MINMAX)
Core.convertScaleAbs(dstNorm, dstNormal8U)
Imgproc.threshold(dstNormal8U, dstNormal8U, 120.0, 255.0, Imgproc.THRESH_BINARY)
GlobalScope.launch(Dispatchers.Main) {
mBinding.ivResult.showMat(dstNormal8U)
}
}
private fun showLoading() {
mBinding.isLoading = true
}
private fun hideLoading() {
mBinding.isLoading = false
}
override fun onDestroy() {
super.onDestroy()
gray.release()
}
}
效果
如下图,图中白点即为评价系数大于120的角点检测结果。代码中的参数可自行调整测试。
源码
https://github.com/onlyloveyd/LearningAndroidOpenCV