BZOJ 1095 ZJOI2007 Hide 捉迷藏 动态树分治+堆

原创 2015年03月19日 17:42:16

题目大意:给定一棵树,一开始每个点都是黑点,多次改变某个点的状态或询问距离最远的两个黑点的距离

《珍爱生命远离STL可是我还是可耻地用了STL系列》

传说中的动态树分治。。。其实并没有那么神嘛= =

↑别听这傻瓜瞎说这货被STL卡了一天QAQ

我们把分治过程中遍历过的重心都连起来 上一层的重心链接下一层的重心 可以得到一棵新的树

下面我们开始讨论这棵新树


显然这棵树的高度不会超过O(logn)

然后我们每个节点开两个堆

第一个堆记录子树中所有节点到父亲节点的距离

第二个堆记录所有子节点的堆顶

那么一个节点的堆2中的最大和次大加起来就是子树中经过这个节点的最长链

然后我们最后开一个全局的堆,记录所有堆2中最大值和次大值之和

那么全局的堆顶就是答案


修改啥的自己YY吧有益身心健康QAQ QAQ QAQ


这内存卡的飞起啊- -

#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define M 100100
using namespace std;
struct Priority_Queue{
	priority_queue<int> heap,delmark;
	void Insert(int x)
	{
		heap.push(x);
	}
	void Erase(int x)
	{
		delmark.push(x);
	}
	void Pop()
	{
		while( delmark.size() && heap.top()==delmark.top() )
			heap.pop(),delmark.pop();
		heap.pop();
	}
	int Top()
	{
		while( delmark.size() && heap.top()==delmark.top() )
			heap.pop(),delmark.pop();
		return heap.top();
	}
	int Second_Top()
	{
		int temp=Top();Pop();
		int re=Top();Insert(temp);
		return re;
	}
	int Size()
	{
		return heap.size()-delmark.size();
	}
}s1[M],s2[M],ans;

struct abcd{
	int to,next;
	bool ban;
}table[M<<1];
int head[M],tot=1;
int n,m,cnt;
int fa[M];
bool status[M];
int log_2[M<<1],dpt[M],pos[M],a[M<<1][20],T;
void Add(int x,int y)
{
	table[++tot].to=y;
	table[tot].next=head[x];
	head[x]=tot;
}
int Get_Size(int x,int from)
{
	int i,re=1;
	for(i=head[x];i;i=table[i].next)
	{
		if(table[i].ban||table[i].to==from)
			continue;
		re+=Get_Size(table[i].to,x);
	}
	return re;
}
int Get_Centre_Of_Gravity(int x,int from,int size,int &cg)
{
	int i,re=1,flag=true;
	for(i=head[x];i;i=table[i].next)
	{
		if(table[i].ban||table[i].to==from)
			continue;
		int temp=Get_Centre_Of_Gravity(table[i].to,x,size,cg);
		if(temp<<1>size)
			flag=false;
		re+=temp;
	}
	if(size-re<<1>size)
		flag=false;
	if(flag) cg=x;
	return re;
}
void DFS(int x,int from,int dpt,Priority_Queue &s)
{
	int i;
	s.Insert(dpt);
	for(i=head[x];i;i=table[i].next)
	{
		if(table[i].ban||table[i].to==from)
			continue;
		DFS(table[i].to,x,dpt+1,s);
	}
}
void Insert(Priority_Queue &s)
{
	if(s.Size()>=2)
	{
		int temp=s.Top()+s.Second_Top();
		ans.Insert(temp);
	}
}
void Erase(Priority_Queue &s)
{
	if(s.Size()>=2)
	{
		int temp=s.Top()+s.Second_Top();
		ans.Erase(temp);
	}
}
int Tree_Divide_And_Conquer(int x)
{
	int i,size,cg;size=Get_Size(x,0);
	Get_Centre_Of_Gravity(x,0,size,cg);
	s2[cg].Insert(0);
	for(i=head[cg];i;i=table[i].next)
		if(!table[i].ban)
		{
			table[i].ban=table[i^1].ban=true;
			Priority_Queue s;
			DFS(table[i].to,0,1,s);
			int temp=Tree_Divide_And_Conquer(table[i].to);
			fa[temp]=cg;s1[temp]=s;
			s2[cg].Insert(s1[temp].Top());
		}
	Insert(s2[cg]);
	return cg;
}
void DFS(int x,int from)
{
	int i;
	a[pos[x]=++T][0]=dpt[x]=dpt[from]+1;
	for(i=head[x];i;i=table[i].next)
		if(table[i].to!=from)
		{
			DFS(table[i].to,x);
			a[++T][0]=dpt[x];
		}
}
int LCA_Depth(int x,int y)
{
	x=pos[x];y=pos[y];
	if(x>y) swap(x,y);
	int L=log_2[y-x+1];
	return min(a[x][L],a[y-(1<<L)+1][L]);
}
int Distance(int x,int y)
{
	return dpt[x]+dpt[y]-2*LCA_Depth(x,y);
}
void Turn_On(int x)
{
	int i;
	Erase(s2[x]);
	s2[x].Insert(0);
	Insert(s2[x]);
	for(i=x;fa[i];i=fa[i])
	{
		Erase(s2[fa[i]]);
		
		if(s1[i].Size())
			s2[fa[i]].Erase(s1[i].Top());
		
		s1[i].Insert(Distance(fa[i],x));
		
		if(s1[i].Size())
			s2[fa[i]].Insert(s1[i].Top());
		
		Insert(s2[fa[i]]);
	}
}
void Turn_Off(int x)
{
	int i;
	Erase(s2[x]);
	s2[x].Erase(0);
	Insert(s2[x]);
	for(i=x;fa[i];i=fa[i])
	{
		Erase(s2[fa[i]]);
		
		if(s1[i].Size())
			s2[fa[i]].Erase(s1[i].Top());
		
		s1[i].Erase(Distance(fa[i],x));
		
		if(s1[i].Size())
			s2[fa[i]].Insert(s1[i].Top());
		
		Insert(s2[fa[i]]);
	}
}
int main()
{
	int i,j,x,y;
	char p[10];
	cin>>n;cnt=n;
	for(i=1;i<n;i++)
	{
		scanf("%d%d",&x,&y);
		Add(x,y);Add(y,x);
	}
	Tree_Divide_And_Conquer(1);
	DFS(1,0);
	for(i=2;i<=T;i++)
		log_2[i]=log_2[i>>1]+1;
	for(j=1;j<=log_2[T];j++)
		for(i=1;i+(1<<j)-1<=T;i++)
			a[i][j]=min(a[i][j-1],a[i+(1<<j-1)][j-1]);
	for(i=1;i<=n;i++)
		status[i]=true;
	cin>>m;
	for(i=1;i<=m;i++)
	{
		scanf("%s",p);
		if(p[0]=='G')
		{
			if(cnt<=1)
				printf("%d\n",cnt-1);
			else
				printf("%d\n",ans.Top());
		}
		else
		{
			scanf("%d",&x);
			if(status[x]==true)
			{
				--cnt;status[x]=false;
				Turn_Off(x);
			}
			else
			{
				++cnt;status[x]=true;
				Turn_On(x);
			}
		}
	}
	return 0;
}


BZOJ1095 [ZJOI2007]捉迷藏 动态点分治

每次修改一个点的黑白状态,询问树上最远黑点距离 拿这个题做动态点分治模板题:(%%%PoPoQQQ大爷) 点分治的过程是对树块找重心之后分成多个小树块,降低规模分别处理的过程,把链的信息收到其中“最高...
  • liuguangzhe1999
  • liuguangzhe1999
  • 2016-04-11 19:49:07
  • 2429

bzoj1095 Hide 捉迷藏 动态点分治+堆 (附动态点分治详解)

1095: [ZJOI2007]Hide 捉迷藏 Time Limit: 40 Sec  Memory Limit: 256 MB Submit: 3978  Solved: 1674 [Submit...
  • lvzelong2014
  • lvzelong2014
  • 2017-08-30 15:06:24
  • 543

【BZOJ1095】【ZJOI2007】捉迷藏 括号序列+线段树维护

原题链接 1095: [ZJOI2007]Hide 捉迷藏 Time Limit: 40 Sec  Memory Limit: 162 MB Submit: 2109  Solved: ...
  • qq_30401759
  • qq_30401759
  • 2016-03-13 19:56:36
  • 1750

BZOJ1095: [ZJOI2007]Hide 捉迷藏

所以为什么这道是动态点分治的模板题….细节好爆炸动态点分治按每次分治的重心建树,然后在分治的过程中处理出每个点在原树中到它新树中log个父亲的距离,它在新树中的层数 然后维护(好多个)堆,分别是(新...
  • L_0_Forever_LF
  • L_0_Forever_LF
  • 2017-03-30 09:22:37
  • 746

【ZJOI2007】bzoj1095 捉迷藏【解法一】

边分治
  • sdfzyhx
  • sdfzyhx
  • 2017-02-19 20:25:48
  • 309

BZOJ1095 & 动态点分治(好像应该叫点分树?)学习笔记

神一般的点分治
  • QWsin
  • QWsin
  • 2017-04-18 15:21:04
  • 1622

【BZOJ1095】捉迷藏,动态点分治

.
  • xym_CSDN
  • xym_CSDN
  • 2016-12-15 10:37:31
  • 472

bzoj 1095

动态点分治做法; 更新一个点只会影响一条log的链,信息用三个堆维护; 点分治作为复杂度保证#include #define rep(i,k,n) for(int i=k;i...
  • limboman
  • limboman
  • 2016-04-04 22:40:04
  • 250

bzoj1095 Hide 捉迷藏 括号序列&线段树

膜拜了岛娘的题解,woc真是太神了。。        不过合并并没有细讲。。不过实际上还是很好理解的。        实际上核心思想是,利用括号序列将两点间距离转化为了该两点间的括号序列化简以后的长度...
  • lych_cys
  • lych_cys
  • 2016-02-21 22:18:21
  • 704

bzoj1095 捉迷藏

我去,传说中的动态点分治入门题,想了我几个小时还是不知道怎么处理让不同子树对父亲节点产生贡献,我的方法无论怎么样都会被同一子树的信息影响,然后Orz了一波 PoPoQQQ,Hzwer大爷,对堆的处理很...
  • Clarehehe
  • Clarehehe
  • 2016-01-06 23:23:29
  • 656
收藏助手
不良信息举报
您举报文章:BZOJ 1095 ZJOI2007 Hide 捉迷藏 动态树分治+堆
举报原因:
原因补充:

(最多只允许输入30个字)