不使用乘除和任何判断、循环计算1+2+...+n【逻辑符短路】

题目来自于《剑指offer(第2版)》,原题是:

求 1+2+...+n ,要求不能使用乘除法、for、while、if、else、switch、case等关键字及条件判断语句(A?B:C)。

 首先,如果我们只是求1+2+...+n的话,正常情况下会有三种方法:公式计算、迭代、递归

//方法一:公式计算,利用等差数列前n项和的公式就即可
public int sumNums(int n){
    return (1 + n) * n / 2;
}

//方法二:迭代计算
public int sumNums(int n){
    int res = 0;
    for(int i = 1; i <= n; i++){
        res += i;
    }
    return res;
}
//方法三:递归计算
public int sumNums(int n){
    if(n <= 1)
        return n;
    return n + sumNums(n-1);
}

但是,题目中要求不能使用乘除法、for、while、if、else、switch、case等关键字及条件判断语句(A?B:C),结合上面的三种方法,我们发现都不符合题目的要求;我们只能选择一种方法进行一些优化,方法三我们只需要让递归终止即可,这里我们就可以用到逻辑运算符短路效应。

其实,逻辑运算符短路效应很简单;常见的逻辑运算符有三种,即 “与 && ”,“或 || ”,“非 !” ;而其有重要的短路效应,如下所示:

if(A && B)  // 若 A 为 false ,则 B 的判断不会执行(即短路),直接判定 A && B 为 false

if(A || B) // 若 A 为 true ,则 B 的判断不会执行(即短路),直接判定 A || B 为 true

所以,本题中的“n==1时递归终止”的要求也可以使用逻辑运算符短路效应来实现。

//时间复杂度和空间复杂度均为O(n)
public int sumNums(int n) {
    boolean b = n>1 && (n += sumNums(n-1)) > 0;
    return n;
}

注:这个方法是跟别的大神学的,感觉这个方法特别厉害,简直就是把简单的逻辑运算符用活了,很值得学习!!

©️2020 CSDN 皮肤主题: 大白 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值