http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#axzz4FIp5fBgM
CUDA C Programming Guide
Changes from Version 7.0
- Updated C/C++ Language Support to:
- Added new section C++11 Language Features,
- Clarified that values of const-qualified variables with builtin floating-point types cannot be used directly in device code when the Microsoft compiler is used as the host compiler,
- Documented the extended lambda feature,
- Documented that typeid, std::type_info, and dynamic_cast are only supported in host code,
- Documented the restrictions on trigraphs and digraphs,
- Clarified the conditions under which layout mismatch can occur on Windows.
- Updated Table 12 to mention support of half-precision floating-point operations on devices of compute capabilities 5.3.
- Updated Table 2 with throughput for half-precision floating-point instructions.
- Added compute capability 5.3 to Table 13.
- Added the maximum number of resident grids per device to Table 13.
- Clarified the definition of __threadfence() in Memory Fence Functions.
- Mentioned in Atomic Functions that atomic functions do not act as memory fences.
1. Introduction
1.1. From Graphics Processing to General Purpose Parallel Computing
Driven by the insatiable market demand for realtime, high-definition 3D graphics, the programmable Graphic Processor Unit or GPU has evolved into a highly parallel, multithreaded, manycore processor with tremendous computational horsepower and very high memory bandwidth, as illustrated by Figure 1 and Figure 2.
The reason behind the discrepancy in floating-point capability between the CPU and the GPU is that the GPU is specialized for compute-intensive, highly parallel computation - exactly what graphics rendering is about - and therefore designed such that more transistors are devoted to data processing rather than data caching and flow control, as schematically illustrated by Figure 3.
More specifically, the GPU is especially well-suited to address problems that can be expressed as data-parallel computations - the same program is executed on many data elements in parallel - with high arithmetic intensity - the ratio of arithmetic operations to memory operations. Because the same program is executed for each data element, there is a lower requirement for sophisticated flow control, and because it is executed on many data elements and has high arithmetic intensity, the memory access latency can be hidden with calculations instead of big data caches.
Data-parallel processing maps data elements to parallel processing threads. Many applications that process large data sets can use a data-parallel programming model to speed up the computations. In 3D rendering, large sets of pixels and vertices are mapped to parallel threads. Similarly, image and media processing applications such as post-processing of rendered images, video encoding and decoding, image scaling, stereo vision, and pattern recognition can map image blocks and pixels to parallel processing threads. In fact, many algorithms outside the field of image rendering and processing are accelerated by data-parallel processing, from general signal processing or physics simulation to computational finance or computational biology.
1.2. CUDA®: A General-Purpose Parallel Computing Platform and Programming Model
In November 2006, NVIDIA introduced CUDA®, a general purpose parallel computing platform and programming model that leverages the parallel compute engine in NVIDIA GPUs to solve many complex computational problems in a more efficient way than on a CPU.
CUDA comes with a software environment that allows developers to use C as a high-level programming language. As illustrated by Figure 4, other languages, application programming interfaces, or directives-based approaches are supported, such as FORTRAN, DirectCompute, OpenACC.
1.3. A Scalable Programming Model
The advent of multicore CPUs and manycore GPUs means that mainstream processor chips are now parallel systems. Furthermore, their parallelism continues to scale with Moore's law. The challenge is to develop application software that transparently scales its parallelism to leverage the increasing number of processor cores, much as 3D graphics applications transparently scale their parallelism to manycore GPUs with widely varying numbers of cores.
The CUDA parallel programming model is designed to overcome this challenge while maintaining a low learning curve for programmers familiar with standard programming languages such as C.
At its core are three key abstractions - a hierarchy of thread groups, shared memories, and barrier synchronization - that are simply exposed to the programmer as a minimal set of language extensions.
These abstractions provide fine-grained data parallelism and thread parallelism, nested within coarse-grained data parallelism and task parallelism. They guide the programmer to partition the problem into coarse sub-problems that can be solved independently in parallel by blocks of threads, and each sub-problem into finer pieces that can be solved cooperatively in parallel by all threads within the block.
This decomposition preserves language expressivity by allowing threads to cooperate when solving each sub-problem, and at the same time enables automatic scalability. Indeed, each block of threads can be scheduled on any of the available multiprocessors within a GPU, in any order, concurrently or sequentially, so that a compiled CUDA program can execute on any number of multiprocessors as illustrated by Figure 5, and only the runtime system needs to know the physical multiprocessor count.
This scalable programming model allows the GPU architecture to span a wide market range by simply scaling the number of multiprocessors and memory partitions: from the high-performance enthusiast GeForce GPUs and professional Quadro and Tesla computing products to a variety of inexpensive, mainstream GeForce GPUs (see CUDA-Enabled GPUs for a list of all CUDA-enabled GPUs).

1.4. Document Structure
- Chapter Introduction is a general introduction to CUDA.
- Chapter Programming Model outlines the CUDA programming model.
- Chapter Programming Interface describes the programming interface.
- Chapter Hardware Implementation describes the hardware implementation.
- Chapter Performance Guidelines gives some guidance on how to achieve maximum performance.
- Appendix CUDA-Enabled GPUs lists all CUDA-enabled devices.
- Appendix C Language Extensions is a detailed description of all extensions to the C language.
- Appendix Mathematical Functions lists the mathematical functions supported in CUDA.
- Appendix C/C++ Language Support lists the C++ features supported in device code.
- Appendix Texture Fetching gives more details on texture fetching
- Appendix Compute Capabilities gives the technical specifications of various devices, as well as more architectural details.
- Appendix Driver API introduces the low-level driver API.
- Appendix CUDA Environment Variables lists all the CUDA environment variables.
2. Programming Model
This chapter introduces the main concepts behind the CUDA programming model by outlining how they are exposed in C. An extensive description of CUDA C is given in Programming Interface.
Full code for the vector addition example used in this chapter and the next can be found in the vectorAdd CUDA sample.
2.1. Kernels
CUDA C extends C by allowing the programmer to define C functions, called kernels, that, when called, are executed N times in parallel by N different CUDA threads, as opposed to only once like regular C functions.
A kernel is defined using the __global__ declaration specifier and the number of CUDA threads that execute that kernel for a given kernel call is specified using a new <<<...>>>execution configuration syntax (see C Language Extensions). Each thread that executes the kernel is given a unique thread ID that is accessible within the kernel through the built-in threadIdx variable.
As an illustration, the following sample code adds two vectors A and B of size N and stores the result into vector C:
// Kernel definition __global__ void VecAdd(float* A, float* B, float* C) { int i = threadIdx.x; C[i] = A[i] + B[i]; } int main() { ... // Kernel invocation with N threads VecAdd<<<1, N>>>(A, B, C); ... }
Here, each of the N threads that execute VecAdd() performs one pair-wise addition.
2.2. Thread Hierarchy
For convenience, threadIdx is a 3-component vector, so that threads can be identified using a one-dimensional, two-dimensional, or three-dimensional thread index, forming a one-dimensional, two-dimensional, or three-dimensional block of threads, called a thread block. This provides a natural way to invoke computation across the elements in a domain such as a vector, matrix, or volume.
The index of a thread and its thread ID relate to each other in a straightforward way: For a one-dimensional block, they are the same; for a two-dimensional block of size (Dx, Dy),the thread ID of a thread of index (x, y) is (x + y Dx); for a three-dimensional block of size (Dx, Dy, Dz), the thread ID of a thread of index (x, y, z) is (x + y Dx + z Dx Dy).
As an example, the following code adds two matrices A and B of size NxN and stores the result into matrix C:
// Kernel definition __global__ void MatAdd(float A[N][N], float B[N][N], float C[N][N]) { int i = threadIdx.x; int j = threadIdx.y; C[i][j] = A[i][j] + B[i][j]; } int main() { ... // Kernel invocation with one block of N * N * 1 threads int numBlocks = 1; dim3 threadsPerBlock(N, N); MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C); ... }
There is a limit to the number of threads per block, since all threads of a block are expected to reside on the same processor core and must share the limited memory resources of that core. On current GPUs, a thread block may contain up to 1024 threads.
However, a kernel can be executed by multiple equally-shaped thread blocks, so that the total number of threads is equal to the number of threads per block times the number of blocks.
Blocks are organized into a one-dimensional, two-dimensional, or three-dimensional grid of thread blocks as illustrated by Figure 6. The number of thread blocks in a grid is usually dictated by the size of the data being processed or the number of processors in the system, which it can greatly exceed.
The number of threads per block and the number of blocks per grid specified in the <<<...>>> syntax can be of type int or dim3. Two-dimensional blocks or grids can be specified as in the example above.
Each block within the grid can be identified by a one-dimensional, two-dimensional, or three-dimensional index accessible within the kernel through the built-in blockIdx variable. The dimension of the thread block is accessible within the kernel through the built-in blockDim variable.
Extending the previous MatAdd() example to handle multiple blocks, the code becomes as follows.
// Kernel definition __global__ void MatAdd(float A[N][N], float B[N][N], float C[N][N]) { int i = blockIdx.x * blockDim.x + threadIdx.x; int j = blockIdx.y * blockDim.y + threadIdx.y; if (i < N && j < N) C[i][j] = A[i][j] + B[i][j]; } int main() { ... // Kernel invocation dim3 threadsPerBlock(16, 16); dim3 numBlocks(N / threadsPerBlock.x, N / threadsPerBlock.y); MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C); ... }
A thread block size of 16x16 (256 threads), although arbitrary in this case, is a common choice. The grid is created with enough blocks to have one thread per matrix element as before. For simplicity, this example assumes that the number of threads per grid in each dimension is evenly divisible by the number of threads per block in that dimension, although that need not be the case.
Thread blocks are required to execute independently: It must be possible to execute them in any order, in parallel or in series. This independence requirement allows thread blocks to be scheduled in any order across any number of cores as illustrated by Figure 5, enabling programmers to write code that scales with the number of cores.
Threads within a block can cooperate by sharing data through some shared memory and by synchronizing their execution to coordinate memory accesses. More precisely, one can specify synchronization points in the kernel by calling the __syncthreads() intrinsic function; __syncthreads() acts as a barrier at which all threads in the block must wait before any is allowed to proceed. Shared Memory gives an example of using shared memory.
For efficient cooperation, the shared memory is expected to be a low-latency memory near each processor core (much like an L1 cache) and __syncthreads() is expected to be lightweight.
2.3. Memory Hierarchy
CUDA threads may access data from multiple memory spaces during their execution as illustrated by Figure 7. Each thread has private local memory. Each thread block has shared memory visible to all threads of the block and with the same lifetime as the block. All threads have access to the same global memory.
There are also two additional read-only memory spaces accessible by all threads: the constant and texture memory spaces. The global, constant, and texture memory spaces are optimized for different memory usages (see Device Memory Accesses). Texture memory also offers different addressing modes, as well as data filtering, for some specific data formats (see Texture and Surface Memory).
The global, constant, and texture memory spaces are persistent across kernel launches by the same application.
2.4. Heterogeneous Programming
As illustrated by Figure 8, the CUDA programming model assumes that the CUDA threads execute on a physically separate device that operates as a coprocessor to the host running the C program. This is the case, for example, when the kernels execute on a GPU and the rest of the C program executes on a CPU.
The CUDA programming model also assumes that both the host and the device maintain their own separate memory spaces in DRAM, referred to as host memory and device memory, respectively. Therefore, a program manages the global, constant, and texture memory spaces visible to kernels through calls to the CUDA runtime (described in Programming Interface). This includes device memory allocation and deallocation as well as data transfer between host and device memory.
2.5. Compute Capability
The compute capability of a device is represented by a version number, also sometimes called its "SM version". This version number identifies the features supported by the GPU hardware and is used by applications at runtime to determine which hardware features and/or instructions are available on the present GPU.
The compute capability comprises a major revision number X and a minor revision number Y and is denoted by X.Y.
Devices with the same major revision number are of the same core architecture. The major revision number is 5 for devices based on the Maxwell architecture, 3 for devices based on the Kepler architecture, 2 for devices based on the Fermi architecture, and 1 for devices based on the Tesla architecture.
The minor revision number corresponds to an incremental improvement to the core architecture, possibly including new features.
CUDA-Enabled GPUs lists of all CUDA-enabled devices along with their compute capability. Compute Capabilities gives the technical specifications of each compute capability.
The Tesla architecture is no longer supported starting with CUDA 7.0.
3. Programming Interface
CUDA C provides a simple path for users familiar with the C programming language to easily write programs for execution by the device.
It consists of a minimal set of extensions to the C language and a runtime library.
The core language extensions have been introduced in Programming Model. They allow programmers to define a kernel as a C function and use some new syntax to specify the grid and block dimension each time the function is called. A complete description of all extensions can be found in C Language Extensions. Any source file that contains some of these extensions must be compiled with nvcc as outlined in Compilation with NVCC.
The runtime is introduced in Compilation Workflow. It provides C functions that execute on the host to allocate and deallocate device memory, transfer data between host memory and device memory, manage systems with multiple devices, etc. A complete description of the runtime can be found in the CUDA reference manual.
The runtime is built on top of a lower-level C API, the CUDA driver API, which is also accessible by the application. The driver API provides an additional level of control by exposing lower-level concepts such as CUDA contexts - the analogue of host processes for the device - and CUDA modules - the analogue of dynamically loaded libraries for the device. Most applications do not use the driver API as they do not need this additional level of control and when using the runtime, context and module management are implicit, resulting in more concise code. The driver API is introduced in Driver API and fully described in the reference manual.
3.1. Compilation with NVCC
Kernels can be written using the CUDA instruction set architecture, called PTX, which is described in the PTX reference manual. It is however usually more effective to use a high-level programming language such as C. In both cases, kernels must be compiled into binary code by nvcc to execute on the device.
nvcc is a compiler driver that simplifies the process of compiling C or PTX code: It provides simple and familiar command line options and executes them by invoking the collection of tools that implement the different compilation stages. This section gives an overview of nvcc workflow and command options. A complete description can be found in the nvcc user manual.
3.1.1. Compilation Workflow
3.1.1.1. Offline Compilation
Source files compiled with nvcc can include a mix of host code (i.e., code that executes on the host) and device code (i.e., code that executes on the device). nvcc's basic workflow consists in separating device code from host code and then:
- compiling the device code into an assembly form (PTX code) and/or binary form (cubin object),
- and modifying the host code by replacing the <<<...>>> syntax introduced in Kernels (and described in more details in Execution Configuration) by the necessary CUDA C runtime function calls to load and launch each compiled kernel from the PTX code and/or cubin object.
The modified host code is output either as C code that is left to be compiled using another tool or as object code directly by letting nvcc invoke the host compiler during the last compilation stage.
Applications can then:
- Either link to the compiled host code (this is the most common case),
- Or ignore the modified host code (if any) and use the CUDA driver API (see Driver API) to load and execute the PTX code or cubin object.
3.1.1.2. Just-in-Time Compilation
Any PTX code loaded by an application at runtime is compiled further to binary code by the device driver. This is called just-in-time compilation. Just-in-time compilation increases application load time, but allows the application to benefit from any new compiler improvements coming with each new device driver. It is also the only way for applications to run on devices that did not exist at the time the application was compiled, as detailed in Application Compatibility.
When the device driver just-in-time compiles some PTX code for some application, it automatically caches a copy of the generated binary code in order to avoid repeating the compilation in subsequent invocations of the application. The cache - referred to as compute cache - is automatically invalidated when the device driver is upgraded, so that applications can benefit from the improvements in the new just-in-time compiler built into the device driver.
Environment variables are available to control just-in-time compilation as described in CUDA Environment Variables
3.1.2. Binary Compatibility
Binary code is architecture-specific. A cubin object is generated using the compiler option -code that specifies the targeted architecture: For example, compiling with -code=sm_35 produces binary code for devices of compute capability 3.5. Binary compatibility is guaranteed from one minor revision to the next one, but not from one minor revision to the previous one or across major revisions. In other words, a cubin object generated for compute capability X.y will only execute on devices of compute capability X.z where z≥y.
3.1.3. PTX Compatibility
Some PTX instructions are only supported on devices of higher compute capabilities. For example, warp shuffle instructions are only supported on devices of compute capability 3.0 and above. The -arch compiler option specifies the compute capability that is assumed when compiling C to PTX code. So, code that contains warp shuffle, for example, must be compiled with -arch=sm_30 (or higher).
PTX code produced for some specific compute capability can always be compiled to binary code of greater or equal compute capability.
3.1.4. Application Compatibility
To execute code on devices of specific compute capability, an application must load binary or PTX code that is compatible with this compute capability as described in Binary Compatibility and PTX Compatibility. In particular, to be able to execute code on future architectures with higher compute capability (for which no binary code can be generated yet), an application must load PTX code that will be just-in-time compiled for these devices (see Just-in-Time Compilation).
Which PTX and binary code gets embedded in a CUDA C application is controlled by the -arch and -code compiler options or the -gencode compiler option as detailed in the nvcc user manual. For example,
nvcc x.cu -gencode arch=compute_20,code=sm_20 -gencode arch=compute_30,code=sm_30 -gencode arch=compute_35,code=\'compute_35,sm_35\'
embeds binary code compatible with compute capability 2.0 and 3.0 (first and second -gencode options) and PTX and binary code compatible with compute capability 3.5 (third -gencode option).
Host code is generated to automatically select at runtime the most appropriate code to load and execute, which, in the above example, will be:
- 2.0 binary code for devices with compute capability 2.0 and 2.1,
- 3.0 binary code for devices with compute capability 3.0,
- 3.5 binary code for devices with compute capability 3.5 and higher 3.x,
- binary code obtained by compiling 3.5 PTX code for devices with compute capabilities 3.5 and higher.
x.cu can have an optimized code path that uses warp shuffle operations, for example, which are only supported in devices of compute capability 3.0 and higher. The __CUDA_ARCH__ macro can be used to differentiate various code paths based on compute capability. It is only defined for device code. When compiling with -arch=compute_35 for example, __CUDA_ARCH__ is equal to 350.
Applications using the driver API must compile code to separate files and explicitly load and execute the most appropriate file at runtime.
The nvcc user manual lists various shorthand for the -arch, -code, and -gencode compiler options. For example, -arch=sm_35 is a shorthand for -arch=compute_35-code=compute_35,sm_35 (which is the same as -gencodearch=compute_35,code=\'compute_35,sm_35\').
3.1.5. C/C++ Compatibility
The front end of the compiler processes CUDA source files according to C++ syntax rules. Full C++ is supported for the host code. However, only a subset of C++ is fully supported for the device code as described in C/C++ Language Support.
3.1.6. 64-Bit Compatibility
The 64-bit version of nvcc compiles device code in 64-bit mode (i.e., pointers are 64-bit). Device code compiled in 64-bit mode is only supported with host code compiled in 64-bit mode.
Similarly, the 32-bit version of nvcc compiles device code in 32-bit mode and device code compiled in 32-bit mode is only supported with host code compiled in 32-bit mode.
The 32-bit version of nvcc can compile device code in 64-bit mode also using the -m64 compiler option.
The 64-bit version of nvcc can compile device code in 32-bit mode also using the -m32 compiler option.
3.2. CUDA C Runtime
The runtime is implemented in the cudart library, which is linked to the application, either statically via cudart.lib or libcudart.a, or dynamically via cudart.dll or libcudart.so. Applications that require cudart.dll and/or cudart.so for dynamic linking typically include them as part of the application installation package.
All its entry points are prefixed with cuda.
As mentioned in Heterogeneous Programming, the CUDA programming model assumes a system composed of a host and a device, each with their own separate memory. Device Memory gives an overview of the runtime functions used to manage device memory.
Shared Memory illustrates the use of shared memory, introduced in Thread Hierarchy, to maximize performance.
Page-Locked Host Memory introduces page-locked host memory that is required to overlap kernel execution with data transfers between host and device memory.
Asynchronous Concurrent Execution describes the concepts and API used to enable asynchronous concurrent execution at various levels in the system.
Multi-Device System shows how the programming model extends to a system with multiple devices attached to the same host.
Error Checking describes how to properly check the errors generated by the runtime.
Call Stack mentions the runtime functions used to manage the CUDA C call stack.
Texture and Surface Memory presents the texture and surface memory spaces that provide another way to access device memory; they also expose a subset of the GPU texturing hardware.
Graphics Interoperability introduces the various functions the runtime provides to interoperate with the two main graphics APIs, OpenGL and Direct3D.
3.2.1. Initialization
There is no explicit initialization function for the runtime; it initializes the first time a runtime function is called (more specifically any function other than functions from the device and version management sections of the reference manual). One needs to keep this in mind when timing runtime function calls and when interpreting the error code from the first call into the runtime.
During initialization, the runtime creates a CUDA context for each device in the system (see Context for more details on CUDA contexts). This context is the primary context for this device and it is shared among all the host threads of the application. As part of this context creation, the device code is just-in-time compiled if necessary (see Just-in-Time Compilation) and loaded into device memory. This all happens under the hood and the runtime does not expose the primary context to the application.
When a host thread calls cudaDeviceReset(), this destroys the primary context of the device the host thread currently operates on (i.e., the current device as defined in Device Selection). The next runtime function call made by any host thread that has this device as current will create a new primary context for this device.
3.2.2. Device Memory
As mentioned in Heterogeneous Programming, the CUDA programming model assumes a system composed of a host and a device, each with their own separate memory. Kernels operate out of device memory, so the runtime provides functions to allocate, deallocate, and copy device memory, as well as transfer data between host memory and device memory.
Device memory can be allocated either as linear memory or as CUDA arrays.
CUDA arrays are opaque memory layouts optimized for texture fetching. They are described in Texture and Surface Memory.
Linear memory exists on the device in a 40-bit address space, so separately allocated entities can reference one another via pointers, for example, in a binary tree.
Linear memory is typically allocated using cudaMalloc() and freed using cudaFree() and data transfer between host memory and device memory are typically done using cudaMemcpy(). In the vector addition code sample of Kernels, the vectors need to be copied from host memory to device memory:
// Device code __global__ void VecAdd(float* A, float* B, float* C, int N) { int i = blockDim.x * blockIdx.x + threadIdx.x; if (i < N) C[i] = A[i] + B[i]; } // Host code int main() { int N = ...; size_t size = N * sizeof(float); // Allocate input vectors h_A and h_B in host memory float* h_A = (float*)malloc(size); float* h_B = (float*)malloc(size); // Initialize input vectors ... // Allocate vectors in device memory float* d_A; cudaMalloc(&d_A, size); float* d_B; cudaMalloc(&d_B, size); float* d_C; cudaMalloc(&d_C, size); // Copy vectors from host memory to device memory cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice); cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice); // Invoke kernel int threadsPerBlock = 256; int blocksPerGrid = (N + threadsPerBlock - 1) / threadsPerBlock; VecAdd<<<blocksPerGrid, threadsPerBlock>>>(d_A, d_B, d_C, N); // Copy result from device memory to host memory // h_C contains the result in host memory cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost); // Free device memory cudaFree(d_A); cudaFree(d_B); cudaFree(d_C); // Free host memory ... }
Linear memory can also be allocated through cudaMallocPitch() and cudaMalloc3D(). These functions are recommended for allocations of 2D or 3D arrays as it makes sure that the allocation is appropriately padded to meet the alignment requirements described in Device Memory Accesses, therefore ensuring best performance when accessing the row addresses or performing copies between 2D arrays and other regions of device memory (using the cudaMemcpy2D() and cudaMemcpy3D() functions). The returned pitch (or stride) must be used to access array elements. The following code sample allocates a width x height 2D array of floating-point values and shows how to loop over the array elements in device code:
// Host code int width = 64, height = 64; float* devPtr; size_t pitch; cudaMallocPitch(&devPtr, &pitch, width * sizeof(float), height); MyKernel<<<100, 512>>>(devPtr, pitch, width, height); // Device code __global__ void MyKernel(float* devPtr, size_t pitch, int width, int height) { for (int r = 0; r < height; ++r) { float* row = (float*)((char*)devPtr + r * pitch); for (int c = 0; c < width; ++c) { float element = row[c]; } } }
The following code sample allocates a width x height x depth 3D array of floating-point values and shows how to loop over the array elements in device code:
// Host code int width = 64, height = 64, depth = 64; cudaExtent extent = make_cudaExtent(width * sizeof(float), height, depth); cudaPitchedPtr devPitchedPtr; cudaMalloc3D(&devPitchedPtr, extent); MyKernel<<<100, 512>>>(devPitchedPtr, width, height, depth); // Device code __global__ void MyKernel(cudaPitchedPtr devPitchedPtr, int width, int height, int depth) { char* devPtr = devPitchedPtr.ptr; size_t pitch = devPitchedPtr.pitch; size_t slicePitch = pitch * height; for (int z = 0; z < depth; ++z) { char* slice = devPtr + z * slicePitch; for (int y = 0; y < height; ++y) { float* row = (float*)(slice + y * pitch); for (int x = 0; x < width; ++x) { float element = row[x]; } } } }
The reference manual lists all the various functions used to copy memory between linear memory allocated with cudaMalloc(), linear memory allocated with cudaMallocPitch() or cudaMalloc3D(), CUDA arrays, and memory allocated for variables declared in global or constant memory space.
The following code sample illustrates various ways of accessing global variables via the runtime API:
__constant__ float constData[256]; float data[256]; cudaMemcpyToSymbol(constData, data, sizeof(data)); cudaMemcpyFromSymbol(data, constData, sizeof(data)); __device__ float devData; float value = 3.14f; cudaMemcpyToSymbol(devData, &value, sizeof(float)); __device__ float* devPointer; float* ptr; cudaMalloc(&ptr, 256 * sizeof(float)); cudaMemcpyToSymbol(devPointer, &ptr, sizeof(ptr));
cudaGetSymbolAddress() is used to retrieve the address pointing to the memory allocated for a variable declared in global memory space. The size of the allocated memory is obtained through cudaGetSymbolSize().
3.2.4. Page-Locked Host Memory
The runtime provides functions to allow the use of page-locked (also known as pinned) host memory (as opposed to regular pageable host memory allocated by malloc()):
- cudaHostAlloc() and cudaFreeHost() allocate and free page-locked host memory;
- cudaHostRegister() page-locks a range of memory allocated by malloc() (see reference manual for limitations).
Using page-locked host memory has several benefits:
- Copies between page-locked host memory and device memory can be performed concurrently with kernel execution for some devices as mentioned in Asynchronous Concurrent Execution.
- On some devices, page-locked host memory can be mapped into the address space of the device, eliminating the need to copy it to or from device memory as detailed in Mapped Memory.
- On systems with a front-side bus, bandwidth between host memory and device memory is higher if host memory is allocated as page-locked and even higher if in addition it is allocated as write-combining as described in Write-Combining Memory.
Page-locked host memory is a scarce resource however, so allocations in page-locked memory will start failing long before allocations in pageable memory. In addition, by reducing the amount of physical memory available to the operating system for paging, consuming too much page-locked memory reduces overall system performance.
The simple zero-copy CUDA sample comes with a detailed document on the page-locked memory APIs.
3.2.4.1. Portable Memory
A block of page-locked memory can be used in conjunction with any device in the system (see Multi-Device System for more details on multi-device systems), but by default, the benefits of using page-locked memory described above are only available in conjunction with the device that was current when the block was allocated (and with all devices sharing the same unified address space, if any, as described in Unified Virtual Address Space). To make these advantages available to all devices, the block needs to be allocated by passing the flag cudaHostAllocPortable to cudaHostAlloc() or page-locked by passing the flag cudaHostRegisterPortable to cudaHostRegister().
3.2.4.2. Write-Combining Memory
By default page-locked host memory is allocated as cacheable. It can optionally be allocated as write-combining instead by passing flag cudaHostAllocWriteCombined to cudaHostAlloc(). Write-combining memory frees up the host's L1 and L2 cache resources, making more cache available to the rest of the application. In addition, write-combining memory is not snooped during transfers across the PCI Express bus, which can improve transfer performance by up to 40%.
Reading from write-combining memory from the host is prohibitively slow, so write-combining memory should in general be used for memory that the host only writes to.
3.2.4.3. Mapped Memory
A block of page-locked host memory can also be mapped into the address space of the device by passing flag cudaHostAllocMapped to cudaHostAlloc() or by passing flag cudaHostRegisterMapped to cudaHostRegister(). Such a block has therefore in general two addresses: one in host memory that is returned by cudaHostAlloc() or malloc(), and one in device memory that can be retrieved using cudaHostGetDevicePointer() and then used to access the block from within a kernel. The only exception is for pointers allocated with cudaHostAlloc() and when a unified address space is used for the host and the device as mentioned in Unified Virtual Address Space.
Accessing host memory directly from within a kernel has several advantages:
- There is no need to allocate a block in device memory and copy data between this block and the block in host memory; data transfers are implicitly performed as needed by the kernel;
- There is no need to use streams (see Concurrent Data Transfers) to overlap data transfers with kernel execution; the kernel-originated data transfers automatically overlap with kernel execution.
Since mapped page-locked memory is shared between host and device however, the application must synchronize memory accesses using streams or events (see Asynchronous Concurrent Execution) to avoid any potential read-after-write, write-after-read, or write-after-write hazards.
To be able to retrieve the device pointer to any mapped page-locked memory, page-locked memory mapping must be enabled by calling cudaSetDeviceFlags() with the cudaDeviceMapHost flag before any other CUDA call is performed. Otherwise, cudaHostGetDevicePointer() will return an error.
cudaHostGetDevicePointer() also returns an error if the device does not support mapped page-locked host memory. Applications may query this capability by checking the canMapHostMemory device property (see Device Enumeration), which is equal to 1 for devices that support mapped page-locked host memory.
Note that atomic functions (see Atomic Functions) operating on mapped page-locked memory are not atomic from the point of view of the host or other devices.
3.2.5. Asynchronous Concurrent Execution
CUDA exposes the following operations as independent tasks that can operate concurrently with one another:
- Computation on the host;
- Computation on the device;
- Memory transfers from the host to the device;
- Memory transfers from the device to the host;
- Memory transfers within the memory of a given device;
- Memory transfers among devices.
The level of concurrency achieved between these operations will depend on the feature set and compute capability of the device as described below.
3.2.5.1. Concurrent Execution between Host and Device
Concurrent host execution is facilitated through asynchronous library functions that return control to the host thread before the device completes the requested task. Using asynchronous calls, many device operations can be queued up together to be executed by the CUDA driver when appropriate device resources are available. This relieves the host thread of much of the responsibility to manage the device, leaving it free for other tasks. The following device operations are asynchronous with respect to the host:
- Kernel launches;
- Memory copies within a single device's memory;
- Memory copies from host to device of a memory block of 64 KB or less;
- Memory copies performed by functions that are suffixed with Async;
- Memory set function calls.
Programmers can globally disable asynchronicity of kernel launches for all CUDA applications running on a system by setting the CUDA_LAUNCH_BLOCKING environment variable to 1. This feature is provided for debugging purposes only and should not be used as a way to make production software run reliably.
Kernel launches are synchronous if hardware counters are collected via a profiler (Nsight, Visual Profiler) unless concurrent kernel profiling is enabled. Async memory copies will also be synchronous if they involve host memory that is not page-locked.
3.2.5.2. Concurrent Kernel Execution
Some devices of compute capability 2.x and higher can execute multiple kernels concurrently. Applications may query this capability by checking the concurrentKernels device property (see Device Enumeration), which is equal to 1 for devices that support it.
The maximum number of kernel launches that a device can execute concurrently depends on its compute capability and is listed in Table 13.
A kernel from one CUDA context cannot execute concurrently with a kernel from another CUDA context.
Kernels that use many textures or a large amount of local memory are less likely to execute concurrently with other kernels.
3.2.5.3. Overlap of Data Transfer and Kernel Execution
Some devices can perform an asynchronous memory copy to or from the GPU concurrently with kernel execution. Applications may query this capability by checking the asyncEngineCount device property (see Device Enumeration), which is greater than zero for devices that support it. If host memory is involved in the copy, it must be page-locked.
It is also possible to perform an intra-device copy simultaneously with kernel execution (on devices that support the concurrentKernels device property) and/or with copies to or from the device (for devices that support the asyncEngineCount property). Intra-device copies are initiated using the standard memory copy functions with destination and source addresses residing on the same device.
3.2.5.4. Concurrent Data Transfers
Some devices of compute capability 2.x and higher can overlap copies to and from the device. Applications may query this capability by checking the asyncEngineCount device property (see Device Enumeration), which is equal to 2 for devices that support it. In order to be overlapped, any host memory involved in the transfers must be page-locked.
3.2.5.5. Streams
Applications manage the concurrent operations described above through streams. A stream is a sequence of commands (possibly issued by different host threads) that execute in order. Different streams, on the other hand, may execute their commands out of order with respect to one another or concurrently; this behavior is not guaranteed and should therefore not be relied upon for correctness (e.g., inter-kernel communication is undefined).
3.2.5.5.1. Creation and Destruction
A stream is defined by creating a stream object and specifying it as the stream parameter to a sequence of kernel launches and host <-> device memory copies. The following code sample creates two streams and allocates an array hostPtr of float in page-locked memory.
cudaStream_t stream[2]; for (int i = 0; i < 2; ++i) cudaStreamCreate(&stream[i]); float* hostPtr; cudaMallocHost(&hostPtr, 2 * size);
Each of these streams is defined by the following code sample as a sequence of one memory copy from host to device, one kernel launch, and one memory copy from device to host:
for (int i = 0; i < 2; ++i) { cudaMemcpyAsync(inputDevPtr + i * size, hostPtr + i * size, size, cudaMemcpyHostToDevice, stream[i]); MyKernel <<<100, 512, 0, stream[i]>>> (outputDevPtr + i * size, inputDevPtr + i * size, size); cudaMemcpyAsync(hostPtr + i * size, outputDevPtr + i * size, size, cudaMemcpyDeviceToHost, stream[i]); }
Each stream copies its portion of input array hostPtr to array inputDevPtr in device memory, processes inputDevPtr on the device by calling MyKernel(), and copies the result outputDevPtr back to the same portion of hostPtr. Overlapping Behavior describes how the streams overlap in this example depending on the capability of the device. Note that hostPtr must point to page-locked host memory for any overlap to occur.
Streams are released by calling cudaStreamDestroy().
for (int i = 0; i < 2; ++i) cudaStreamDestroy(stream[i]);
cudaStreamDestroy() waits for all preceding commands in the given stream to complete before destroying the stream and returning control to the host thread.
3.2.5.5.2. Default Stream
Kernel launches and host <-> device memory copies that do not specify any stream parameter, or equivalently that set the stream parameter to zero, are issued to the default stream. They are therefore executed in order.
For code that is compiled using the --default-stream per-thread compilation flag (or that defines the CUDA_API_PER_THREAD_DEFAULT_STREAM macro before including CUDA headers (cuda.h and cuda_runtime.h)), the default stream is a regular stream and each host thread has its own default stream.
For code that is compiled using the --default-stream legacy compilation flag, the default stream is a special stream called the NULL stream and each device has a single NULL stream used for all host threads. The NULL stream is special as it causes implicit synchronization as described in Implicit Synchronization.
For code that is compiled without specifying a --default-stream compilation flag, --default-stream legacy is assumed as the default.
3.2.5.5.3. Explicit Synchronization
There are various ways to explicitly synchronize streams with each other.
cudaDeviceSynchronize() waits until all preceding commands in all streams of all host threads have completed.
cudaStreamSynchronize()takes a stream as a parameter and waits until all preceding commands in the given stream have completed. It can be used to synchronize the host with a specific stream, allowing other streams to continue executing on the device.
cudaStreamWaitEvent()takes a stream and an event as parameters (see Events for a description of events)and makes all the commands added to the given stream after the call to cudaStreamWaitEvent()delay their execution until the given event has completed. The stream can be 0, in which case all the commands added to any stream after the call to cudaStreamWaitEvent()wait on the event.
cudaStreamQuery()provides applications with a way to know if all preceding commands in a stream have completed.
To avoid unnecessary slowdowns, all these synchronization functions are usually best used for timing purposes or to isolate a launch or memory copy that is failing.
3.2.5.5.4. Implicit Synchronization
Two commands from different streams cannot run concurrently if any one of the following operations is issued in-between them by the host thread:
- a page-locked host memory allocation,
- a device memory allocation,
- a device memory set,
- a memory copy between two addresses to the same device memory,
- any CUDA command to the NULL stream,
- a switch between the L1/shared memory configurations described in Compute Capability 2.x and Compute Capability 3.x.
For devices that support concurrent kernel execution and are of compute capability 3.0 or lower, any operation that requires a dependency check to see if a streamed kernel launch is complete:
- Can start executing only when all thread blocks of all prior kernel launches from any stream in the CUDA context have started executing;
- Blocks all later kernel launches from any stream in the CUDA context until the kernel launch being checked is complete.
Operations that require a dependency check include any other commands within the same stream as the launch being checked and any call to cudaStreamQuery() on that stream. Therefore, applications should follow these guidelines to improve their potential for concurrent kernel execution:
- All independent operations should be issued before dependent operations,
- Synchronization of any kind should be delayed as long as possible.
3.2.5.5.5. Overlapping Behavior
The amount of execution overlap between two streams depends on the order in which the commands are issued to each stream and whether or not the device supports overlap of data transfer and kernel execution (see Overlap of Data Transfer and Kernel Execution), concurrent kernel execution (see Concurrent Kernel Execution), and/or concurrent data transfers (see Concurrent Data Transfers).
For example, on devices that do not support concurrent data transfers, the two streams of the code sample of Creation and Destruction do not overlap at all because the memory copy from host to device is issued to stream[1] after the memory copy from device to host is issued to stream[0], so it can only start once the memory copy from device to host issued to stream[0] has completed. If the code is rewritten the following way (and assuming the device supports overlap of data transfer and kernel execution)
for (int i = 0; i < 2; ++i) cudaMemcpyAsync(inputDevPtr + i * size, hostPtr + i * size, size, cudaMemcpyHostToDevice, stream[i]); for (int i = 0; i < 2; ++i) MyKernel<<<100, 512, 0, stream[i]>>> (outputDevPtr + i * size, inputDevPtr + i * size, size); for (int i = 0; i < 2; ++i) cudaMemcpyAsync(hostPtr + i * size, outputDevPtr + i * size, size, cudaMemcpyDeviceToHost, stream[i]);
then the memory copy from host to device issued to stream[1] overlaps with the kernel launch issued to stream[0].
On devices that do support concurrent data transfers, the two streams of the code sample of Creation and Destruction do overlap: The memory copy from host to device issued to stream[1] overlaps with the memory copy from device to host issued to stream[0] and even with the kernel launch issued to stream[0] (assuming the device supports overlap of data transfer and kernel execution). However, for devices of compute capability 3.0 or lower, the kernel executions cannot possibly overlap because the second kernel launch is issued to stream[1] after the memory copy from device to host is issued to stream[0], so it is blocked until the first kernel launch issued to stream[0] is complete as per Implicit Synchronization. If the code is rewritten as above, the kernel executions overlap (assuming the device supports concurrent kernel execution) since the second kernel launch is issued to stream[1] before the memory copy from device to host is issued to stream[0]. In that case however, the memory copy from device to host issued to stream[0] only overlaps with the last thread blocks of the kernel launch issued to stream[1] as per Implicit Synchronization, which can represent only a small portion of the total execution time of the kernel.
3.2.5.5.6. Callbacks
The runtime provides a way to insert a callback at any point into a stream via cudaStreamAddCallback(). A callback is a function that is executed on the host once all commands issued to the stream before the callback have completed. Callbacks in stream 0 are executed once all preceding tasks and commands issued in all streams before the callback have completed.
The following code sample adds the callback function MyCallback to each of two streams after issuing a host-to-device memory copy, a kernel launch and a device-to-host memory copy into each stream. The callback will begin execution on the host after each of the device-to-host memory copies completes.
void CUDART_CB MyCallback(cudaStream_t stream, cudaError_t status, void *data){ printf("Inside callback %d\n", (size_t)data); } ... for (size_t i = 0; i < 2; ++i) { cudaMemcpyAsync(devPtrIn[i], hostPtr[i], size, cudaMemcpyHostToDevice, stream[i]); MyKernel<<<100, 512, 0, stream[i]>>>(devPtrOut[i], devPtrIn[i], size); cudaMemcpyAsync(hostPtr[i], devPtrOut[i], size, cudaMemcpyDeviceToHost, stream[i]); cudaStreamAddCallback(stream[i], MyCallback, (void*)i, 0); }
The commands that are issued in a stream (or all commands issued to any stream if the callback is issued to stream 0) after a callback do not start executing before the callback has completed. The last parameter of cudaStreamAddCallback() is reserved for future use.
A callback must not make CUDA API calls (directly or indirectly), as it might end up waiting on itself if it makes such a call leading to a deadlock.
3.2.5.5.7. Stream Priorities
The relative priorities of streams can be specified at creation using cudaStreamCreateWithPriority(). The range of allowable priorities, ordered as [ highest priority, lowest priority ] can be obtained using the cudaDeviceGetStreamPriorityRange() function. At runtime, as blocks in low-priority schemes finish, waiting blocks in higher-priority streams are scheduled in their place.
The following code sample obtains the allowable range of priorities for the current device, and creates streams with the highest and lowest available priorities
// get the range of stream priorities for this device int priority_high, priority_low; cudaDeviceGetStreamPriorityRange(&priority_low, &priority_high); // create streams with highest and lowest available priorities cudaStream_t st_high, st_low; cudaStreamCreateWithPriority(&st_high, cudaStreamNonBlocking, priority_high); cudaStreamCreateWithPriority(&st_low, cudaStreamNonBlocking, priority_low);
3.2.5.6. Events
The runtime also provides a way to closely monitor the device's progress, as well as perform accurate timing, by letting the application asynchronously record events at any point in the program and query when these events are completed. An event has completed when all tasks - or optionally, all commands in a given stream - preceding the event have completed. Events in stream zero are completed after all preceding tasks and commands in all streams are completed.
3.2.5.6.1. Creation and Destruction
The following code sample creates two events:
cudaEvent_t start, stop; cudaEventCreate(&start); cudaEventCreate(&stop);
They are destroyed this way:
cudaEventDestroy(start); cudaEventDestroy(stop);
3.2.5.6.2. Elapsed Time
The events created in Creation and Destruction can be used to time the code sample of Creation and Destruction the following way:
cudaEventRecord(start, 0); for (int i = 0; i < 2; ++i) { cudaMemcpyAsync(inputDev + i * size, inputHost + i * size, size, cudaMemcpyHostToDevice, stream[i]); MyKernel<<<100, 512, 0, stream[i]>>> (outputDev + i * size, inputDev + i * size, size); cudaMemcpyAsync(outputHost + i * size, outputDev + i * size, size, cudaMemcpyDeviceToHost, stream[i]); } cudaEventRecord(stop, 0); cudaEventSynchronize(stop); float elapsedTime; cudaEventElapsedTime(&elapsedTime, start, stop);
3.2.5.7. Synchronous Calls
When a synchronous function is called, control is not returned to the host thread before the device has completed the requested task. Whether the host thread will then yield, block, or spin can be specified by calling cudaSetDeviceFlags()with some specific flags (see reference manual for details) before any other CUDA call is performed by the host thread.
3.2.6. Multi-Device System
3.2.6.1. Device Enumeration
A host system can have multiple devices. The following code sample shows how to enumerate these devices, query their properties, and determine the number of CUDA-enabled devices.
int deviceCount; cudaGetDeviceCount(&deviceCount); int device; for (device = 0; device < deviceCount; ++device) { cudaDeviceProp deviceProp; cudaGetDeviceProperties(&deviceProp, device); printf("Device %d has compute capability %d.%d.\n", device, deviceProp.major, deviceProp.minor); }
3.2.6.2. Device Selection
A host thread can set the device it operates on at any time by calling cudaSetDevice(). Device memory allocations and kernel launches are made on the currently set device; streams and events are created in association with the currently set device. If no call to cudaSetDevice() is made, the current device is device 0.
The following code sample illustrates how setting the current device affects memory allocation and kernel execution.
size_t size = 1024 * sizeof(float); cudaSetDevice(0); // Set device 0 as current float* p0; cudaMalloc(&p0, size); // Allocate memory on device 0 MyKernel<<<1000, 128>>>(p0); // Launch kernel on device 0 cudaSetDevice(1); // Set device 1 as current float* p1; cudaMalloc(&p1, size); // Allocate memory on device 1 MyKernel<<<1000, 128>>>(p1); // Launch kernel on device 1
3.2.6.3. Stream and Event Behavior
A kernel launch will fail if it is issued to a stream that is not associated to the current device as illustrated in the following code sample.
cudaSetDevice(0); // Set device 0 as current cudaStream_t s0; cudaStreamCreate(&s0); // Create stream s0 on device 0 MyKernel<<<100, 64, 0, s0>>>(); // Launch kernel on device 0 in s0 cudaSetDevice(1); // Set device 1 as current cudaStream_t s1; cudaStreamCreate(&s1); // Create stream s1 on device 1 MyKernel<<<100, 64, 0, s1>>>(); // Launch kernel on device 1 in s1 // This kernel launch will fail: MyKernel<<<100, 64, 0, s0>>>(); // Launch kernel on device 1 in s0
A memory copy will succeed even if it is issued to a stream that is not associated to the current device.
cudaEventRecord() will fail if the input event and input stream are associated to different devices.
cudaEventElapsedTime() will fail if the two input events are associated to different devices.
cudaEventSynchronize() and cudaEventQuery() will succeed even if the input event is associated to a device that is different from the current device.
cudaStreamWaitEvent() will succeed even if the input stream and input event are associated to different devices. cudaStreamWaitEvent() can therefore be used to synchronize multiple devices with each other.
Each device has its own default stream (see Default Stream), so commands issued to the default stream of a device may execute out of order or concurrently with respect to commands issued to the default stream of any other device.
3.2.6.4. Peer-to-Peer Memory Access
When the application is run as a 64-bit process, devices of compute capability 2.0 and higher from the Tesla series may address each other's memory (i.e., a kernel executing on one device can dereference a pointer to the memory of the other device). This peer-to-peer memory access feature is supported between two devices if cudaDeviceCanAccessPeer() returns true for these two devices.
Peer-to-peer memory access must be enabled between two devices by calling cudaDeviceEnablePeerAccess() as illustrated in the following code sample. Each device can support a system-wide maximum of eight peer connections.
A unified address space is used for both devices (see Unified Virtual Address Space), so the same pointer can be used to address memory from both devices as shown in the code sample below.
cudaSetDevice(0); // Set device 0 as current float* p0; size_t size = 1024 * sizeof(float); cudaMalloc(&p0, size); // Allocate memory on device 0 MyKernel<<<1000, 128>>>(p0); // Launch kernel on device 0 cudaSetDevice(1); // Set device 1 as current cudaDeviceEnablePeerAccess(0, 0); // Enable peer-to-peer access // with device 0 // Launch kernel on device 1 // This kernel launch can access memory on device 0 at address p0 MyKernel<<<1000, 128>>>(p0);
3.2.6.5. Peer-to-Peer Memory Copy
Memory copies can be performed between the memories of two different devices.
When a unified address space is used for both devices (see Unified Virtual Address Space), this is done using the regular memory copy functions mentioned in Device Memory.
Otherwise, this is done using cudaMemcpyPeer(), cudaMemcpyPeerAsync(), cudaMemcpy3DPeer(), or cudaMemcpy3DPeerAsync() as illustrated in the following code sample.
cudaSetDevice(0); // Set device 0 as current float* p0; size_t size = 1024 * sizeof(float); cudaMalloc(&p0, size); // Allocate memory on device 0 cudaSetDevice(1); // Set device 1 as current float* p1; cudaMalloc(&p1, size); // Allocate memory on device 1 cudaSetDevice(0); // Set device 0 as current MyKernel<<<1000, 128>>>(p0); // Launch kernel on device 0 cudaSetDevice(1); // Set device 1 as current cudaMemcpyPeer(p1, 1, p0, 0, size); // Copy p0 to p1 MyKernel<<<1000, 128>>>(p1); // Launch kernel on device 1
A copy (in the implicit NULL stream) between the memories of two different devices:
- does not start until all commands previously issued to either device have completed and
- runs to completion before any commands (see Asynchronous Concurrent Execution) issued after the copy to either device can start.
Consistent with the normal behavior of streams, an asynchronous copy between the memories of two devices may overlap with copies or kernels in another stream.
Note that if peer-to-peer access is enabled between two devices via cudaDeviceEnablePeerAccess() as described in Peer-to-Peer Memory Access, peer-to-peer memory copy between these two devices no longer needs to be staged through the host and is therefore faster.
3.2.7. Unified Virtual Address Space
When the application is run as a 64-bit process, a single address space is used for the host and all the devices of compute capability 2.0 and higher. All host memory allocations made via CUDA API calls and all device memory allocations on supported devices are within this virtual address range. As a consequence:
- The location of any memory on the host allocated through CUDA, or on any of the devices which use the unified address space, can be determined from the value of the pointer using cudaPointerGetAttributes().
- When copying to or from the memory of any device which uses the unified address space, the cudaMemcpyKind parameter of cudaMemcpy*() can be set to cudaMemcpyDefault to determine locations from the pointers. This also works for host pointers not allocated through CUDA, as long as the current device uses unified addressing.
- Allocations via cudaHostAlloc() are automatically portable (see Portable Memory) across all the devices for which the unified address space is used, and pointers returned by cudaHostAlloc() can be used directly from within kernels running on these devices (i.e., there is no need to obtain a device pointer via cudaHostGetDevicePointer() as described in Mapped Memory.
Applications may query if the unified address space is used for a particular device by checking that the unifiedAddressing device property (see Device Enumeration) is equal to 1.
3.2.8. Interprocess Communication
Any device memory pointer or event handle created by a host thread can be directly referenced by any other thread within the same process. It is not valid outside this process however, and therefore cannot be directly referenced by threads belonging to a different process.
To share device memory pointers and events across processes, an application must use the Inter Process Communication API, which is described in detail in the reference manual. The IPC API is only supported for 64-bit processes on Linux and for devices of compute capability 2.0 and higher.
Using this API, an application can get the IPC handle for a given device memory pointer using cudaIpcGetMemHandle(), pass it to another process using standard IPC mechanisms (e.g., interprocess shared memory or files), and use cudaIpcOpenMemHandle() to retrieve a device pointer from the IPC handle that is a valid pointer within this other process. Event handles can be shared using similar entry points.
An example of using the IPC API is where a single master process generates a batch of input data, making the data available to multiple slave processes without requiring regeneration or copying.
3.2.9. Error Checking
All runtime functions return an error code, but for an asynchronous function (see Asynchronous Concurrent Execution), this error code cannot possibly report any of the asynchronous errors that could occur on the device since the function returns before the device has completed the task; the error code only reports errors that occur on the host prior to executing the task, typically related to parameter validation; if an asynchronous error occurs, it will be reported by some subsequent unrelated runtime function call.
The only way to check for asynchronous errors just after some asynchronous function call is therefore to synchronize just after the call by calling cudaDeviceSynchronize() (or by using any other synchronization mechanisms described in Asynchronous Concurrent Execution) and checking the error code returned by cudaDeviceSynchronize().
The runtime maintains an error variable for each host thread that is initialized to cudaSuccess and is overwritten by the error code every time an error occurs (be it a parameter validation error or an asynchronous error). cudaPeekAtLastError() returns this variable. cudaGetLastError() returns this variable and resets it to cudaSuccess.
Kernel launches do not return any error code, so cudaPeekAtLastError() or cudaGetLastError() must be called just after the kernel launch to retrieve any pre-launch errors. To ensure that any error returned by cudaPeekAtLastError() or cudaGetLastError() does not originate from calls prior to the kernel launch, one has to make sure that the runtime error variable is set to cudaSuccess just before the kernel launch, for example, by calling cudaGetLastError() just before the kernel launch. Kernel launches are asynchronous, so to check for asynchronous errors, the application must synchronize in-between the kernel launch and the call to cudaPeekAtLastError() or cudaGetLastError().
Note that cudaErrorNotReady that may be returned by cudaStreamQuery() and cudaEventQuery() is not considered an error and is therefore not reported by cudaPeekAtLastError() or cudaGetLastError().
3.2.10. Call Stack
On devices of compute capability 2.x and higher, the size of the call stack can be queried using cudaDeviceGetLimit() and set using cudaDeviceSetLimit().
When the call stack overflows, the kernel call fails with a stack overflow error if the application is run via a CUDA debugger (cuda-gdb, Nsight) or an unspecified launch error, otherwise.
3.2.11. Texture and Surface Memory
CUDA supports a subset of the texturing hardware that the GPU uses for graphics to access texture and surface memory. Reading data from texture or surface memory instead of global memory can have several performance benefits as described in Device Memory Accesses.
There are two different APIs to access texture and surface memory:
- The texture reference API that is supported on all devices,
- The texture object API that is only supported on devices of compute capability 3.x.
The texture reference API has limitations that the texture object API does not have. They are mentioned in Texture Reference API.
3.2.11.1. Texture Memory
Texture memory is read from kernels using the device functions described in Texture Functions. The process of reading a texture calling one of these functions is called a texture fetch. Each texture fetch specifies a parameter called a texture object for the texture object API or a texture reference for the texture reference API.
The texture object or the texture reference specifies:
- The texture, which is the piece of texture memory that is fetched. Texture objects are created at runtime and the texture is specified when creating the texture object as described in Texture Object API. Texture references are created at compile time and the texture is specified at runtime by bounding the texture reference to the texture through runtime functions as described in Texture Reference API; several distinct texture references might be bound to the same texture or to textures that overlap in memory. A texture can be any region of linear memory or a CUDA array (described in CUDA Arrays).
- Its dimensionality that specifies whether the texture is addressed as a one dimensional array using one texture coordinate, a two-dimensional array using two texture coordinates, or a three-dimensional array using three texture coordinates. Elements of the array are called texels, short for texture elements. The texture width, height, and depth refer to the size of the array in each dimension. Table 13 lists the maximum texture width, height, and depth depending on the compute capability of the device.
- The type of a texel, which is restricted to the basic integer and single-precision floating-point types and any of the 1-, 2-, and 4-component vector types defined in char, short, int, long, longlong, float, double that are derived from the basic integer and single-precision floating-point types.
- The read mode, which is equal to cudaReadModeNormalizedFloat or cudaReadModeElementType. If it is cudaReadModeNormalizedFloat and the type of the texel is a 16-bit or 8-bit integer type, the value returned by the texture fetch is actually returned as floating-point type and the full range of the integer type is mapped to [0.0, 1.0] for unsigned integer type and [-1.0, 1.0] for signed integer type; for example, an unsigned 8-bit texture element with the value 0xff reads as 1. If it is cudaReadModeElementType, no conversion is performed.
- Whether texture coordinates are normalized or not. By default, textures are referenced (by the functions of Texture Functions) using floating-point coordinates in the range [0, N-1] where N is the size of the texture in the dimension corresponding to the coordinate. For example, a texture that is 64x32 in size will be referenced with coordinates in the range [0, 63] and [0, 31] for the x and y dimensions, respectively. Normalized texture coordinates cause the coordinates to be specified in the range [0.0, 1.0-1/N] instead of [0, N-1], so the same 64x32 texture would be addressed by normalized coordinates in the range [0, 1-1/N] in both the x and y dimensions. Normalized texture coordinates are a natural fit to some applications' requirements, if it is preferable for the texture coordinates to be independent of the texture size.
- The addressing mode. It is valid to call the device functions of Section B.8 with coordinates that are out of range. The addressing mode defines what happens in that case. The default addressing mode is to clamp the coordinates to the valid range: [0, N) for non-normalized coordinates and [0.0, 1.0) for normalized coordinates. If the border mode is specified instead, texture fetches with out-of-range texture coordinates return zero. For normalized coordinates, the warp mode and the mirror mode are also available. When using the wrap mode, each coordinate x is converted to frac(x)=x floor(x) where floor(x) is the largest integer not greater than x. When using the mirror mode, each coordinate x is converted to frac(x) if floor(x) is even and 1-frac(x) if floor(x) is odd. The addressing mode is specified as an array of size three whose first, second, and third elements specify the addressing mode for the first, second, and third texture coordinates, respectively; the addressing mode are cudaAddressModeBorder, cudaAddressModeClamp, cudaAddressModeWrap, and cudaAddressModeMirror; cudaAddressModeWrap and cudaAddressModeMirror are only supported for normalized texture coordinates
- The filtering mode which specifies how the value returned when fetching the texture is computed based on the input texture coordinates. Linear texture filtering may be done only for textures that are configured to return floating-point data. It performs low-precision interpolation between neighboring texels. When enabled, the texels surrounding a texture fetch location are read and the return value of the texture fetch is interpolated based on where the texture coordinates fell between the texels. Simple linear interpolation is performed for one-dimensional textures, bilinear interpolation for two-dimensional textures, and trilinear interpolation for three-dimensional textures. Texture Fetching gives more details on texture fetching. The filtering mode is equal to cudaFilterModePoint or cudaFilterModeLinear. If it is cudaFilterModePoint, the returned value is the texel whose texture coordinates are the closest to the input texture coordinates. If it is cudaFilterModeLinear, the returned value is the linear interpolation of the two (for a one-dimensional texture), four (for a two dimensional texture), or eight (for a three dimensional texture) texels whose texture coordinates are the closest to the input texture coordinates. cudaFilterModeLinear is only valid for returned values of floating-point type.
Texture Object API introduces the texture object API.
Texture Reference API introduces the texture reference API.
16-Bit Floating-Point Textures explains how to deal with 16-bit floating-point textures.
Textures can also be layered as described in Layered Textures.
Cubemap Textures and Cubemap Layered Textures describe a special type of texture, the cubemap texture.
Texture Gather describes a special texture fetch, texture gather.
3.2.11.1.1. Texture Object API
A texture object is created using cudaCreateTextureObject() from a resource description of type struct cudaResourceDesc, which specifies the texture, and from a texture description defined as such:
struct cudaTextureDesc { enum cudaTextureAddressMode addressMode[3]; enum cudaTextureFilterMode filterMode; enum cudaTextureReadMode readMode; int sRGB; int normalizedCoords; unsigned int maxAnisotropy; enum cudaTextureFilterMode mipmapFilterMode; float mipmapLevelBias; float minMipmapLevelClamp; float maxMipmapLevelClamp; };
- addressMode specifies the addressing mode;
- filterMode specifies the filter mode;
- readMode specifies the read mode;
- normalizedCoords specifies whether texture coordinates are normalized or not;
- See reference manual for sRGB, maxAnisotropy, mipmapFilterMode, mipmapLevelBias, minMipmapLevelClamp, and maxMipmapLevelClamp.
The following code sample applies some simple transformation kernel to a texture.
// Simple transformation kernel __global__ void transformKernel(float* output, cudaTextureObject_t texObj, int width, int height, float theta) { // Calculate normalized texture coordinates unsigned int x = blockIdx.x * blockDim.x + threadIdx.x; unsigned int y = blockIdx.y * blockDim.y + threadIdx.y; float u = x / (float)width; float v = y / (float)height; // Transform coordinates u -= 0.5f; v -= 0.5f; float tu = u * cosf(theta) - v * sinf(theta) + 0.5f; float tv = v * cosf(theta) + u * sinf(theta) + 0.5f; // Read from texture and write to global memory output[y * width + x] = tex2D<float>(texObj, tu, tv); }
// Host code int main() { // Allocate CUDA array in device memory cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc(32, 0, 0, 0, cudaChannelFormatKindFloat); cudaArray* cuArray; cudaMallocArray(&cuArray, &channelDesc, width, height); // Copy to device memory some data located at address h_data // in host memory cudaMemcpyToArray(cuArray, 0, 0, h_data, size, cudaMemcpyHostToDevice); // Specify texture struct cudaResourceDesc resDesc; memset(&resDesc, 0, sizeof(resDesc)); resDesc.resType = cudaResourceTypeArray; resDesc.res.array.array = cuArray; // Specify texture object parameters struct cudaTextureDesc texDesc; memset(&texDesc, 0, sizeof(texDesc)); texDesc.addressMode[0] = cudaAddressModeWrap; texDesc.addressMode[1] = cudaAddressModeWrap; texDesc.filterMode = cudaFilterModeLinear; texDesc.readMode = cudaReadModeElementType; texDesc.normalizedCoords = 1; // Create texture object cudaTextureObject_t texObj = 0; cudaCreateTextureObject(&texObj, &resDesc, &texDesc, NULL); // Allocate result of transformation in device memory float* output; cudaMalloc(&output, width * height * sizeof(float)); // Invoke kernel dim3 dimBlock(16, 16); dim3 dimGrid((width + dimBlock.x - 1) / dimBlock.x, (height + dimBlock.y - 1) / dimBlock.y); transformKernel<<<dimGrid, dimBlock>>>(output, texObj, width, height, angle); // Destroy texture object cudaDestroyTextureObject(texObj); // Free device memory cudaFreeArray(cuArray); cudaFree(output); return 0; }
3.2.11.1.2. Texture Reference API
Some of the attributes of a texture reference are immutable and must be known at compile time; they are specified when declaring the texture reference. A texture reference is declared at file scope as a variable of type texture:
texture<DataType, Type, ReadMode> texRef;
where:
- DataType specifies the type of the texel;
- Type specifies the type of the texture reference and is equal to cudaTextureType1D, cudaTextureType2D, or cudaTextureType3D, for a one-dimensional, two-dimensional, or three-dimensional texture, respectively, or cudaTextureType1DLayered or cudaTextureType2DLayered for a one-dimensional or two-dimensional layered texture respectively; Type is an optional argument which defaults to cudaTextureType1D;
- ReadMode specifies the read mode; it is an optional argument which defaults to cudaReadModeElementType.
A texture reference can only be declared as a static global variable and cannot be passed as an argument to a function.
The other attributes of a texture reference are mutable and can be changed at runtime through the host runtime. As explained in the reference manual, the runtime API has a low-level C-style interface and a high-level C++-style interface. The texture type is defined in the high-level API as a structure publicly derived from the textureReference type defined in the low-level API as such:
struct textureReference { int normalized; enum cudaTextureFilterMode filterMode; enum cudaTextureAddressMode addressMode[3]; struct cudaChannelFormatDesc channelDesc; int sRGB; unsigned int maxAnisotropy; enum cudaTextureFilterMode mipmapFilterMode; float mipmapLevelBias; float minMipmapLevelClamp; float maxMipmapLevelClamp; }
- normalized specifies whether texture coordinates are normalized or not;
- filterMode specifies the filtering mode;
- addressMode specifies the addressing mode;
-
channelDesc describes the format of the texel; it must match the DataType argument of the texture reference declaration; channelDesc is of the following type:
struct cudaChannelFormatDesc { int x, y, z, w; enum cudaChannelFormatKind f; };
where x, y, z, and w are equal to the number of bits of each component of the returned value and f is:
- cudaChannelFormatKindSigned if these components are of signed integer type,
- cudaChannelFormatKindUnsigned if they are of unsigned integer type,
- cudaChannelFormatKindFloat if they are of floating point type.
- See reference manual for sRGB, maxAnisotropy, mipmapFilterMode, mipmapLevelBias, minMipmapLevelClamp, and maxMipmapLevelClamp.
normalized, addressMode, and filterMode may be directly modified in host code.
Before a kernel can use a texture reference to read from texture memory, the texture reference must be bound to a texture using cudaBindTexture() or cudaBindTexture2D() for linear memory, or cudaBindTextureToArray() for CUDA arrays. cudaUnbindTexture() is used to unbind a texture reference. Once a texture reference has been unbound, it can be safely rebound to another array, even if kernels that use the previously bound texture have not completed. It is recommended to allocate two-dimensional textures in linear memory using cudaMallocPitch() and use the pitch returned by cudaMallocPitch() as input parameter to cudaBindTexture2D().
The following code samples bind a 2D texture reference to linear memory pointed to by devPtr:
-
Using the low-level API:
texture<float, cudaTextureType2D, cudaReadModeElementType> texRef; textureReference* texRefPtr; cudaGetTextureReference(&texRefPtr, &texRef); cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc<float>(); size_t offset; cudaBindTexture2D(&offset, texRefPtr, devPtr, &channelDesc, width, height, pitch);
-
Using the high-level API:
texture<float, cudaTextureType2D, cudaReadModeElementType> texRef; cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc<float>(); size_t offset; cudaBindTexture2D(&offset, texRef, devPtr, channelDesc, width, height, pitch);
The following code samples bind a 2D texture reference to a CUDA array cuArray:
-
Using the low-level API:
texture<float, cudaTextureType2D, cudaReadModeElementType> texRef; textureReference* texRefPtr; cudaGetTextureReference(&texRefPtr, &texRef); cudaChannelFormatDesc channelDesc; cudaGetChannelDesc(&channelDesc, cuArray); cudaBindTextureToArray(texRef, cuArray, &channelDesc);
-
Using the high-level API:
texture<float, cudaTextureType2D, cudaReadModeElementType> texRef; cudaBindTextureToArray(texRef, cuArray);
The format specified when binding a texture to a texture reference must match the parameters specified when declaring the texture reference; otherwise, the results of texture fetches are undefined.
There is a limit to the number of textures that can be bound to a kernel as specified in Table 13.
The following code sample applies some simple transformation kernel to a texture.
// 2D float texture texture<float, cudaTextureType2D, cudaReadModeElementType> texRef; // Simple transformation kernel __global__ void transformKernel(float* output, int width, int height, float theta) { // Calculate normalized texture coordinates unsigned int x = blockIdx.x * blockDim.x + threadIdx.x; unsigned int y = blockIdx.y * blockDim.y + threadIdx.y; float u = x / (float)width; float v = y / (float)height; // Transform coordinates u -= 0.5f; v -= 0.5f; float tu = u * cosf(theta) - v * sinf(theta) + 0.5f; float tv = v * cosf(theta) + u * sinf(theta) + 0.5f; // Read from texture and write to global memory output[y * width + x] = tex2D(texRef, tu, tv); } // Host code int main() { // Allocate CUDA array in device memory cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc(32, 0, 0, 0, cudaChannelFormatKindFloat); cudaArray* cuArray; cudaMallocArray(&cuArray, &channelDesc, width, height); // Copy to device memory some data located at address h_data // in host memory cudaMemcpyToArray(cuArray, 0, 0, h_data, size, cudaMemcpyHostToDevice); // Set texture reference parameters texRef.addressMode[0] = cudaAddressModeWrap; texRef.addressMode[1] = cudaAddressModeWrap; texRef.filterMode = cudaFilterModeLinear; texRef.normalized = true; // Bind the array to the texture reference cudaBindTextureToArray(texRef, cuArray, channelDesc); // Allocate result of transformation in device memory float* output; cudaMalloc(&output, width * height * sizeof(float)); // Invoke kernel dim3 dimBlock(16, 16); dim3 dimGrid((width + dimBlock.x - 1) / dimBlock.x, (height + dimBlock.y - 1) / dimBlock.y); transformKernel<<<dimGrid, dimBlock>>>(output, width, height, angle); // Free device memory cudaFreeArray(cuArray); cudaFree(output); return 0; }
3.2.11.1.3. 16-Bit Floating-Point Textures
The 16-bit floating-point or half format supported by CUDA arrays is the same as the IEEE 754-2008 binary2 format.
CUDA C does not support a matching data type, but provides intrinsic functions to convert to and from the 32-bit floating-point format via the unsigned short type: __float2half_rn(float) and __half2float(unsigned short). These functions are only supported in device code. Equivalent functions for the host code can be found in the OpenEXR library, for example.
16-bit floating-point components are promoted to 32 bit float during texture fetching before any filtering is performed.
A channel description for the 16-bit floating-point format can be created by calling one of the cudaCreateChannelDescHalf*() functions.
3.2.11.1.4. Layered Textures
A one-dimensional or two-dimensional layered texture (also known as texture array in Direct3D and array texture in OpenGL) is a texture made up of a sequence of layers, all of which are regular textures of same dimensionality, size, and data type.
A one-dimensional layered texture is addressed using an integer index and a floating-point texture coordinate; the index denotes a layer within the sequence and the coordinate addresses a texel within that layer. A two-dimensional layered texture is addressed using an integer index and two floating-point texture coordinates; the index denotes a layer within the sequence and the coordinates address a texel within that layer.
A layered texture can only be a CUDA array by calling cudaMalloc3DArray() with the cudaArrayLayered flag (and a height of zero for one-dimensional layered texture).
Layered textures are fetched using the device functions described in tex1DLayered(), tex1DLayered(), tex2DLayered(), and tex2DLayered(). Texture filtering (see Texture Fetching) is done only within a layer, not across layers.
Layered textures are only supported on devices of compute capability 2.0 and higher.
3.2.11.1.5. Cubemap Textures
A cubemap texture is a special type of two-dimensional layered texture that has six layers representing the faces of a cube:
- The width of a layer is equal to its height.
- The cubemap is addressed using three texture coordinates x, y, and z that are interpreted as a direction vector emanating from the center of the cube and pointing to one face of the cube and a texel within the layer corresponding to that face. More specifically, the face is selected by the coordinate with largest magnitude m and the corresponding layer is addressed using coordinates (s/m+1)/2 and (t/m+1)/2 where s and t are defined in Table 1.
face | m | s | t | ||
---|---|---|---|---|---|
|x| > |y| and |x| > |z| | x > 0 | 0 | x | -z | -y |
x < 0 | 1 | -x | z | -y | |
|y| > |x| and |y| > |z| | y > 0 | 2 | y | x | z |
y < 0 | 3 | -y | x | -z | |
|z| > |x| and |z| > |y| | z > 0 | 4 | z | x | -y |
z < 0 | 5 | -z | -x | -y |
A layered texture can only be a CUDA array by calling cudaMalloc3DArray() with the cudaArrayCubemap flag.
Cubemap textures are fetched using the device function described in texCubemap() and texCubemap().
Cubemap textures are only supported on devices of compute capability 2.0 and higher.
3.2.11.1.6. Cubemap Layered Textures
A cubemap layered texture is a layered texture whose layers are cubemaps of same dimension.
A cubemap layered texture is addressed using an integer index and three floating-point texture coordinates; the index denotes a cubemap within the sequence and the coordinates address a texel within that cubemap.
A layered texture can only be a CUDA array by calling cudaMalloc3DArray() with the cudaArrayLayered and cudaArrayCubemap flags.
Cubemap layered textures are fetched using the device function described in texCubemapLayered() and texCubemapLayered(). Texture filtering (see Texture Fetching) is done only within a layer, not across layers.
Cubemap layered textures are only supported on devices of compute capability 2.0 and higher.
3.2.11.1.7. Texture Gather
Texture gather is a special texture fetch that is available for two-dimensional textures only. It is performed by the tex2Dgather() function, which has the same parameters as tex2D(), plus an additional comp parameter equal to 0, 1, 2, or 3 (see tex2Dgather() and tex2Dgather()). It returns four 32-bit numbers that correspond to the value of the component comp of each of the four texels that would have been used for bilinear filtering during a regular texture fetch. For example, if these texels are of values (253, 20, 31, 255), (250, 25, 29, 254), (249, 16, 37, 253), (251, 22, 30, 250), and comp is 2, tex2Dgather() returns (31, 29, 37, 30).
Texture gather is only supported for CUDA arrays created with the cudaArrayTextureGather flag and of width and height less than the maximum specified in Table 13 for texture gather, which is smaller than for regular texture fetch.
Texture gather is only supported on devices of compute capability 2.0 and higher.
3.2.11.2. Surface Memory
For devices of compute capability 2.0 and higher, a CUDA array (described in Cubemap Surfaces), created with the cudaArraySurfaceLoadStore flag, can be read and written via a surface object or surface reference using the functions described in Surface Functions.
Table 13 lists the maximum surface width, height, and depth depending on the compute capability of the device.
3.2.11.2.1. Surface Object API
A surface object is created using cudaCreateSurfaceObject() from a resource description of type struct cudaResourceDesc.
The following code sample applies some simple transformation kernel to a texture.
// Simple copy kernel __global__ void copyKernel(cudaSurfaceObject_t inputSurfObj, cudaSurfaceObject_t outputSurfObj, int width, int height) { // Calculate surface coordinates unsigned int x = blockIdx.x * blockDim.x + threadIdx.x; unsigned int y = blockIdx.y * blockDim.y + threadIdx.y; if (x < width && y < height) { uchar4 data; // Read from input surface surf2Dread(&data, inputSurfObj, x * 4, y); // Write to output surface surf2Dwrite(data, outputSurfObj, x * 4, y); } } // Host code int main() { // Allocate CUDA arrays in device memory cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc(8, 8, 8, 8, cudaChannelFormatKindUnsigned); cudaArray* cuInputArray; cudaMallocArray(&cuInputArray, &channelDesc, width, height, cudaArraySurfaceLoadStore); cudaArray* cuOutputArray; cudaMallocArray(&cuOutputArray, &channelDesc, width, height, cudaArraySurfaceLoadStore); // Copy to device memory some data located at address h_data // in host memory cudaMemcpyToArray(cuInputArray, 0, 0, h_data, size, cudaMemcpyHostToDevice); // Specify surface struct cudaResourceDesc resDesc; memset(&resDesc, 0, sizeof(resDesc)); resDesc.resType = cudaResourceTypeArray; // Create the surface objects resDesc.res.array.array = cuInputArray; cudaSurfaceObject_t inputSurfObj = 0; cudaCreateSurfaceObject(&inputSurfObj, &resDesc); resDesc.res.array.array = cuOutputArray; cudaSurfaceObject_t outputSurfObj = 0; cudaCreateSurfaceObject(&outputSurfObj, &resDesc); // Invoke kernel dim3 dimBlock(16, 16); dim3 dimGrid((width + dimBlock.x - 1) / dimBlock.x, (height + dimBlock.y - 1) / dimBlock.y); copyKernel<<<dimGrid, dimBlock>>>(inputSurfObj, outputSurfObj, width, height); // Destroy surface objects cudaDestroySurfaceObject(inputSurfObj); cudaDestroySurfaceObject(outputSurfObj); // Free device memory cudaFreeArray(cuInputArray); cudaFreeArray(cuOutputArray); return 0; }
3.2.11.2.2. Surface Reference API
A surface reference is declared at file scope as a variable of type surface:
surface<void, Type> surfRef;
where Type specifies the type of the surface reference and is equal to cudaSurfaceType1D, cudaSurfaceType2D, cudaSurfaceType3D, cudaSurfaceTypeCubemap, cudaSurfaceType1DLayered, cudaSurfaceType2DLayered, or cudaSurfaceTypeCubemapLayered; Type is an optional argument which defaults to cudaSurfaceType1D. A surface reference can only be declared as a static global variable and cannot be passed as an argument to a function.
Before a kernel can use a surface reference to access a CUDA array, the surface reference must be bound to the CUDA array using cudaBindSurfaceToArray().
The following code samples bind a surface reference to a CUDA array cuArray:
-
Using the low-level API:
surface<void, cudaSurfaceType2D> surfRef; surfaceReference* surfRefPtr; cudaGetSurfaceReference(&surfRefPtr, "surfRef"); cudaChannelFormatDesc channelDesc; cudaGetChannelDesc(&channelDesc, cuArray); cudaBindSurfaceToArray(surfRef, cuArray, &channelDesc);
-
Using the high-level API:
surface<void, cudaSurfaceType2D> surfRef; cudaBindSurfaceToArray(surfRef, cuArray);
A CUDA array must be read and written using surface functions of matching dimensionality and type and via a surface reference of matching dimensionality; otherwise, the results of reading and writing the CUDA array are undefined.
Unlike texture memory, surface memory uses byte addressing. This means that the x-coordinate used to access a texture element via texture functions needs to be multiplied by the byte size of the element to access the same element via a surface function. For example, the element at texture coordinate x of a one-dimensional floating-point CUDA array bound to a texture reference texRef and a surface reference surfRef is read using tex1d(texRef, x) via texRef, but surf1Dread(surfRef, 4*x) via surfRef. Similarly, the element at texture coordinate x and y of a two-dimensional floating-point CUDA array bound to a texture reference texRef and a surface reference surfRef is accessed using tex2d(texRef, x, y) via texRef, but surf2Dread(surfRef, 4*x, y) via surfRef (the byte offset of the y-coordinate is internally calculated from the underlying line pitch of the CUDA array).
The following code sample applies some simple transformation kernel to a texture.
// 2D surfaces surface<void, 2> inputSurfRef; surface<void, 2> outputSurfRef; // Simple copy kernel __global__ void copyKernel(int width, int height) { // Calculate surface coordinates unsigned int x = blockIdx.x * blockDim.x + threadIdx.x; unsigned int y = blockIdx.y * blockDim.y + threadIdx.y; if (x < width && y < height) { uchar4 data; // Read from input surface surf2Dread(&data, inputSurfRef, x * 4, y); // Write to output surface surf2Dwrite(data, outputSurfRef, x * 4, y); } } // Host code int main() { // Allocate CUDA arrays in device memory cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc(8, 8, 8, 8, cudaChannelFormatKindUnsigned); cudaArray* cuInputArray; cudaMallocArray(&cuInputArray, &channelDesc, width, height, cudaArraySurfaceLoadStore); cudaArray* cuOutputArray; cudaMallocArray(&cuOutputArray, &channelDesc, width, height, cudaArraySurfaceLoadStore); // Copy to device memory some data located at address h_data // in host memory cudaMemcpyToArray(cuInputArray, 0, 0, h_data, size, cudaMemcpyHostToDevice); // Bind the arrays to the surface references cudaBindSurfaceToArray(inputSurfRef, cuInputArray); cudaBindSurfaceToArray(outputSurfRef, cuOutputArray); // Invoke kernel dim3 dimBlock(16, 16); dim3 dimGrid((width + dimBlock.x - 1) / dimBlock.x, (height + dimBlock.y - 1) / dimBlock.y); copyKernel<<<dimGrid, dimBlock>>>(width, height); // Free device memory cudaFreeArray(cuInputArray); cudaFreeArray(cuOutputArray); return 0; }
3.2.11.2.3. Cubemap Surfaces
Cubemap surfaces are accessed usingsurfCubemapread() and surfCubemapwrite() (surfCubemapread and surfCubemapwrite) as a two-dimensional layered surface, i.e., using an integer index denoting a face and two floating-point texture coordinates addressing a texel within the layer corresponding to this face. Faces are ordered as indicated in Table 1.
3.2.11.2.4. Cubemap Layered Surfaces
Cubemap layered surfaces are accessed using surfCubemapLayeredread() and surfCubemapLayeredwrite() (surfCubemapLayeredread() and surfCubemapLayeredwrite()) as a two-dimensional layered surface, i.e., using an integer index denoting a face of one of the cubemaps and two floating-point texture coordinates addressing a texel within the layer corresponding to this face. Faces are ordered as indicated in Table 1, so index ((2 * 6) + 3), for example, accesses the fourth face of the third cubemap.
3.2.11.3. CUDA Arrays
CUDA arrays are opaque memory layouts optimized for texture fetching. They are one dimensional, two dimensional, or three-dimensional and composed of elements, each of which has 1, 2 or 4 components that may be signed or unsigned 8-, 16-, or 32-bit integers, 16-bit floats, or 32-bit floats. CUDA arrays are only accessible by kernels through texture fetching as described in Texture Memory or surface reading and writing as described in Surface Memory.
3.2.11.4. Read/Write Coherency
The texture and surface memory is cached (see Device Memory Accesses) and within the same kernel call, the cache is not kept coherent with respect to global memory writes and surface memory writes, so any texture fetch or surface read to an address that has been written to via a global write or a surface write in the same kernel call returns undefined data. In other words, a thread can safely read some texture or surface memory location only if this memory location has been updated by a previous kernel call or memory copy, but not if it has been previously updated by the same thread or another thread from the same kernel call.
3.2.12. Graphics Interoperability
Some resources from OpenGL and Direct3D may be mapped into the address space of CUDA, either to enable CUDA to read data written by OpenGL or Direct3D, or to enable CUDA to write data for consumption by OpenGL or Direct3D.
A resource must be registered to CUDA before it can be mapped using the functions mentioned in OpenGL Interoperability and Direct3D Interoperability. These functions return a pointer to a CUDA graphics resource of type struct cudaGraphicsResource. Registering a resource is potentially high-overhead and therefore typically called only once per resource. A CUDA graphics resource is unregistered using cudaGraphicsUnregisterResource(). Each CUDA context which intends to use the resource is required to register it separately.
Once a resource is registered to CUDA, it can be mapped and unmapped as many times as necessary using cudaGraphicsMapResources() and cudaGraphicsUnmapResources(). cudaGraphicsResourceSetMapFlags() can be called to specify usage hints (write-only, read-only) that the CUDA driver can use to optimize resource management.
A mapped resource can be read from or written to by kernels using the device memory address returned by cudaGraphicsResourceGetMappedPointer() for buffers and cudaGraphicsSubResourceGetMappedArray() for CUDA arrays.
Accessing a resource through OpenGL, Direct3D, or another CUDA context while it is mapped produces undefined results. OpenGL Interoperability and Direct3D Interoperability give specifics for each graphics API and some code samples. SLI Interoperability gives specifics for when the system is in SLI mode.
3.2.12.1. OpenGL Interoperability
The OpenGL resources that may be mapped into the address space of CUDA are OpenGL buffer, texture, and renderbuffer objects.
A buffer object is registered using cudaGraphicsGLRegisterBuffer(). In CUDA, it appears as a device pointer and can therefore be read and written by kernels or via cudaMemcpy() calls.
A texture or renderbuffer object is registered using cudaGraphicsGLRegisterImage(). In CUDA, it appears as a CUDA array. Kernels can read from the array by binding it to a texture or surface reference. They can also write to it via the surface write functions if the resource has been registered with the cudaGraphicsRegisterFlagsSurfaceLoadStore flag. The array can also be read and written via cudaMemcpy2D() calls. cudaGraphicsGLRegisterImage() supports all texture formats with 1, 2, or 4 components and an internal type of float (e.g., GL_RGBA_FLOAT32), normalized integer (e.g., GL_RGBA8, GL_INTENSITY16), and unnormalized integer (e.g., GL_RGBA8UI) (please note that since unnormalized integer formats require OpenGL 3.0, they can only be written by shaders, not the fixed function pipeline).
The OpenGL context whose resources are being shared has to be current to the host thread making any OpenGL interoperability API calls.
Please note: When an OpenGL texture is made bindless (say for example by requesting an image or texture handle using the glGetTextureHandle*/glGetImageHandle* APIs) it cannot be registered with CUDA. The application needs to register the texture for interop before requesting an image or texture handle.
The following code sample uses a kernel to dynamically modify a 2D width x height grid of vertices stored in a vertex buffer object:
GLuint positionsVBO; struct cudaGraphicsResource* positionsVBO_CUDA; int main() { // Initialize OpenGL and GLUT for device 0 // and make the OpenGL context current ... glutDisplayFunc(display); // Explicitly set device 0 cudaSetDevice(0); // Create buffer object and register it with CUDA glGenBuffers(1, &positionsVBO); glBindBuffer(GL_ARRAY_BUFFER, positionsVBO); unsigned int size = width * height * 4 * sizeof(float); glBufferData(GL_ARRAY_BUFFER, size, 0, GL_DYNAMIC_DRAW); glBindBuffer(GL_ARRAY_BUFFER, 0); cudaGraphicsGLRegisterBuffer(&positionsVBO_CUDA, positionsVBO, cudaGraphicsMapFlagsWriteDiscard); // Launch rendering loop glutMainLoop(); ... } void display() { // Map buffer object for writing from CUDA float4* positions; cudaGraphicsMapResources(1, &positionsVBO_CUDA, 0); size_t num_bytes; cudaGraphicsResourceGetMappedPointer((void**)&positions, &num_bytes, positionsVBO_CUDA)); // Execute kernel dim3 dimBlock(16, 16, 1); dim3 dimGrid(width / dimBlock.x, height / dimBlock.y, 1); createVertices<<<dimGrid, dimBlock>>>(positions, time, width, height); // Unmap buffer object cudaGraphicsUnmapResources(1, &positionsVBO_CUDA, 0); // Render from buffer object glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glBindBuffer(GL_ARRAY_BUFFER, positionsVBO); glVertexPointer(4, GL_FLOAT, 0, 0); glEnableClientState(GL_VERTEX_ARRAY); glDrawArrays(GL_POINTS, 0, width * height); glDisableClientState(GL_VERTEX_ARRAY); // Swap buffers glutSwapBuffers(); glutPostRedisplay(); }
void deleteVBO() { cudaGraphicsUnregisterResource(positionsVBO_CUDA); glDeleteBuffers(1, &positionsVBO); } __global__ void createVertices(float4* positions, float time, unsigned int width, unsigned int height) { unsigned int x = blockIdx.x * blockDim.x + threadIdx.x; unsigned int y = blockIdx.y * blockDim.y + threadIdx.y; // Calculate uv coordinates float u = x / (float)width; float v = y / (float)height; u = u * 2.0f - 1.0f; v = v * 2.0f - 1.0f; // calculate simple sine wave pattern float freq = 4.0f; float w = sinf(u * freq + time) * cosf(v * freq + time) * 0.5f; // Write positions positions[y * width + x] = make_float4(u, w, v, 1.0f); }
On Windows and for Quadro GPUs, cudaWGLGetDevice() can be used to retrieve the CUDA device associated to the handle returned by wglEnumGpusNV(). Quadro GPUs offer higher performance OpenGL interoperability than GeForce and Tesla GPUs in a multi-GPU configuration where OpenGL rendering is performed on the Quadro GPU and CUDA computations are performed on other GPUs in the system.
3.2.12.2. Direct3D Interoperability
Direct3D interoperability is supported for Direct3D 9Ex, Direct3D 10, and Direct3D 11.
A CUDA context may interoperate only with Direct3D devices that fulfill the following criteria: Direct3D 9Ex devices must be created with DeviceType set to D3DDEVTYPE_HAL and BehaviorFlags with the D3DCREATE_HARDWARE_VERTEXPROCESSING flag; Direct3D 10 and Direct3D 11 devices must be created with DriverType set to D3D_DRIVER_TYPE_HARDWARE.
The Direct3D resources that may be mapped into the address space of CUDA are Direct3D buffers, textures, and surfaces. These resources are registered using cudaGraphicsD3D9RegisterResource(), cudaGraphicsD3D10RegisterResource(), and cudaGraphicsD3D11RegisterResource().
The following code sample uses a kernel to dynamically modify a 2D width x height grid of vertices stored in a vertex buffer object.
3.2.12.2.1. Direct3D 9 Version
IDirect3D9* D3D; IDirect3DDevice9* device; struct CUSTOMVERTEX { FLOAT x, y, z; DWORD color; }; IDirect3DVertexBuffer9* positionsVB; struct cudaGraphicsResource* positionsVB_CUDA; int main() { int dev; // Initialize Direct3D D3D = Direct3DCreate9Ex(D3D_SDK_VERSION); // Get a CUDA-enabled adapter unsigned int adapter = 0; for (; adapter < g_pD3D->GetAdapterCount(); adapter++) { D3DADAPTER_IDENTIFIER9 adapterId; g_pD3D->GetAdapterIdentifier(adapter, 0, &adapterId); if (cudaD3D9GetDevice(&dev, adapterId.DeviceName) == cudaSuccess) break; } // Create device ... D3D->CreateDeviceEx(adapter, D3DDEVTYPE_HAL, hWnd, D3DCREATE_HARDWARE_VERTEXPROCESSING, ¶ms, NULL, &device); // Use the same device cudaSetDevice(dev); // Create vertex buffer and register it with CUDA unsigned int size = width * height * sizeof(CUSTOMVERTEX); device->CreateVertexBuffer(size, 0, D3DFVF_CUSTOMVERTEX, D3DPOOL_DEFAULT, &positionsVB, 0); cudaGraphicsD3D9RegisterResource(&positionsVB_CUDA, positionsVB, cudaGraphicsRegisterFlagsNone); cudaGraphicsResourceSetMapFlags(positionsVB_CUDA, cudaGraphicsMapFlagsWriteDiscard); // Launch rendering loop while (...) { ... Render(); ... } ... }
void Render() { // Map vertex buffer for writing from CUDA float4* positions; cudaGraphicsMapResources(1, &positionsVB_CUDA, 0); size_t num_bytes; cudaGraphicsResourceGetMappedPointer((void**)&positions, &num_bytes, positionsVB_CUDA)); // Execute kernel dim3 dimBlock(16, 16, 1); dim3 dimGrid(width / dimBlock.x, height / dimBlock.y, 1); createVertices<<<dimGrid, dimBlock>>>(positions, time, width, height); // Unmap vertex buffer cudaGraphicsUnmapResources(1, &positionsVB_CUDA, 0); // Draw and present ... } void releaseVB() { cudaGraphicsUnregisterResource(positionsVB_CUDA); positionsVB->Release(); } __global__ void createVertices(float4* positions, float time, unsigned int width, unsigned int height) { unsigned int x = blockIdx.x * blockDim.x + threadIdx.x; unsigned int y = blockIdx.y * blockDim.y + threadIdx.y; // Calculate uv coordinates float u = x / (float)width; float v = y / (float)height; u = u * 2.0f - 1.0f; v = v * 2.0f - 1.0f; // Calculate simple sine wave pattern float freq = 4.0f; float w = sinf(u * freq + time) * cosf(v * freq + time) * 0.5f; // Write positions positions[y * width + x] = make_float4(u, w, v, __int_as_float(0xff00ff00)); }
3.2.12.2.2. Direct3D 10 Version
ID3D10Device* device; struct CUSTOMVERTEX { FLOAT x, y, z; DWORD color; }; ID3D10Buffer* positionsVB; struct cudaGraphicsResource* positionsVB_CUDA; int main() { int dev; // Get a CUDA-enabled adapter IDXGIFactory* factory; CreateDXGIFactory(__uuidof(IDXGIFactory), (void**)&factory); IDXGIAdapter* adapter = 0; for (unsigned int i = 0; !adapter; ++i) { if (FAILED(factory->EnumAdapters(i, &adapter)) break; if (cudaD3D10GetDevice(&dev, adapter) == cudaSuccess) break; adapter->Release(); } factory->Release(); // Create swap chain and device ... D3D10CreateDeviceAndSwapChain(adapter, D3D10_DRIVER_TYPE_HARDWARE, 0, D3D10_CREATE_DEVICE_DEBUG, D3D10_SDK_VERSION, &swapChainDesc, &swapChain, &device); adapter->Release(); // Use the same device cudaSetDevice(dev); // Create vertex buffer and register it with CUDA unsigned int size = width * height * sizeof(CUSTOMVERTEX); D3D10_BUFFER_DESC bufferDesc; bufferDesc.Usage = D3D10_USAGE_DEFAULT; bufferDesc.ByteWidth = size; bufferDesc.BindFlags = D3D10_BIND_VERTEX_BUFFER; bufferDesc.CPUAccessFlags = 0; bufferDesc.MiscFlags = 0; device->CreateBuffer(&bufferDesc, 0, &positionsVB); cudaGraphicsD3D10RegisterResource(&positionsVB_CUDA, positionsVB, cudaGraphicsRegisterFlagsNone); cudaGraphicsResourceSetMapFlags(positionsVB_CUDA, cudaGraphicsMapFlagsWriteDiscard); // Launch rendering loop while (...) { ... Render(); ... } ... }
void Render() { // Map vertex buffer for writing from CUDA float4* positions; cudaGraphicsMapResources(1, &positionsVB_CUDA, 0); size_t num_bytes; cudaGraphicsResourceGetMappedPointer((void**)&positions, &num_bytes, positionsVB_CUDA)); // Execute kernel dim3 dimBlock(16, 16, 1); dim3 dimGrid(width / dimBlock.x, height / dimBlock.y, 1); createVertices<<<dimGrid, dimBlock>>>(positions, time, width, height); // Unmap vertex buffer cudaGraphicsUnmapResources(1, &positionsVB_CUDA, 0); // Draw and present ... } void releaseVB() { cudaGraphicsUnregisterResource(positionsVB_CUDA); positionsVB->Release(); } __global__ void createVertices(float4* positions, float time, unsigned int width, unsigned int height) { unsigned int x = blockIdx.x * blockDim.x + threadIdx.x; unsigned int y = blockIdx.y * blockDim.y + threadIdx.y; // Calculate uv coordinates float u = x / (float)width; float v = y / (float)height; u = u * 2.0f - 1.0f; v = v * 2.0f - 1.0f; // Calculate simple sine wave pattern float freq = 4.0f; float w = sinf(u * freq + time) * cosf(v * freq + time) * 0.5f; // Write positions positions[y * width + x] = make_float4(u, w, v, __int_as_float(0xff00ff00)); }
3.2.12.2.3. Direct3D 11 Version
ID3D11Device* device; struct CUSTOMVERTEX { FLOAT x, y, z; DWORD color; }; ID3D11Buffer* positionsVB; struct cudaGraphicsResource* positionsVB_CUDA; int main() { int dev; // Get a CUDA-enabled adapter IDXGIFactory* factory; CreateDXGIFactory(__uuidof(IDXGIFactory), (void**)&factory); IDXGIAdapter* adapter = 0; for (unsigned int i = 0; !adapter; ++i) { if (FAILED(factory->EnumAdapters(i, &adapter)) break; if (cudaD3D11GetDevice(&dev, adapter) == cudaSuccess) break; adapter->Release(); } factory->Release(); // Create swap chain and device ... sFnPtr_D3D11CreateDeviceAndSwapChain(adapter, D3D11_DRIVER_TYPE_HARDWARE, 0, D3D11_CREATE_DEVICE_DEBUG, featureLevels, 3, D3D11_SDK_VERSION, &swapChainDesc, &swapChain, &device, &featureLevel, &deviceContext); adapter->Release(); // Use the same device cudaSetDevice(dev); // Create vertex buffer and register it with CUDA unsigned int size = width * height * sizeof(CUSTOMVERTEX); D3D11_BUFFER_DESC bufferDesc; bufferDesc.Usage = D3D11_USAGE_DEFAULT; bufferDesc.ByteWidth = size; bufferDesc.BindFlags = D3D11_BIND_VERTEX_BUFFER; bufferDesc.CPUAccessFlags = 0; bufferDesc.MiscFlags = 0; device->CreateBuffer(&bufferDesc, 0, &positionsVB); cudaGraphicsD3D11RegisterResource(&positionsVB_CUDA, positionsVB, cudaGraphicsRegisterFlagsNone); cudaGraphicsResourceSetMapFlags(positionsVB_CUDA, cudaGraphicsMapFlagsWriteDiscard); // Launch rendering loop while (...) { ... Render(); ... } ... }
void Render() { // Map vertex buffer for writing from CUDA float4* positions; cudaGraphicsMapResources(1, &positionsVB_CUDA, 0); size_t num_bytes; cudaGraphicsResourceGetMappedPointer((void**)&positions, &num_bytes, positionsVB_CUDA)); // Execute kernel dim3 dimBlock(16, 16, 1); dim3 dimGrid(width / dimBlock.x, height / dimBlock.y, 1); createVertices<<<dimGrid, dimBlock>>>(positions, time, width, height); // Unmap vertex buffer cudaGraphicsUnmapResources(1, &positionsVB_CUDA, 0); // Draw and present ... } void releaseVB() { cudaGraphicsUnregisterResource(positionsVB_CUDA); positionsVB->Release(); } __global__ void createVertices(float4* positions, float time, unsigned int width, unsigned int height) { unsigned int x = blockIdx.x * blockDim.x + threadIdx.x; unsigned int y = blockIdx.y * blockDim.y + threadIdx.y; // Calculate uv coordinates float u = x / (float)width; float v = y / (float)height; u = u * 2.0f - 1.0f; v = v * 2.0f - 1.0f; // Calculate simple sine wave pattern float freq = 4.0f; float w = sinf(u * freq + time) * cosf(v * freq + time) * 0.5f; // Write positions positions[y * width + x] = make_float4(u, w, v, __int_as_float(0xff00ff00)); }
3.2.12.3. SLI Interoperability
In a system with multiple GPUs, all CUDA-enabled GPUs are accessible via the CUDA driver and runtime as separate devices. There are however special considerations as described below when the system is in SLI mode.
First, an allocation in one CUDA device on one GPU will consume memory on other GPUs that are part of the SLI configuration of the Direct3D or OpenGL device. Because of this, allocations may fail earlier than otherwise expected.
Second, applications should create multiple CUDA contexts, one for each GPU in the SLI configuration. While this is not a strict requirement, it avoids unnecessary data transfers between devices. The application can use the cudaD3D[9|10|11]GetDevices() for Direct3D and cudaGLGetDevices() for OpenGL set of calls to identify the CUDA device handle(s) for the device(s) that are performing the rendering in the current and next frame. Given this information the application will typically choose the appropriate device and map Direct3D or OpenGL resources to the CUDA device returned by cudaD3D[9|10|11]GetDevices() or cudaGLGetDevices() when the deviceList parameter is set to cudaD3D[9|10|11]DeviceListCurrentFrame or cudaGLDeviceListCurrentFrame.
Please note that resource returned from cudaGraphicsD9D[9|10|11]RegisterResource and cudaGraphicsGLRegister[Buffer|Image] must be only used on device the registration happened. Therefore on SLI configurations when data for different frames is computed on different CUDA devices it is necessary to register the resources for each separatly.
See Direct3D Interoperability and OpenGL Interoperability for details on how the CUDA runtime interoperate with Direct3D and OpenGL, respectively.
3.3. Versioning and Compatibility
There are two version numbers that developers should care about when developing a CUDA application: The compute capability that describes the general specifications and features of the compute device (see Compute Capability) and the version of the CUDA driver API that describes the features supported by the driver API and runtime.
The version of the driver API is defined in the driver header file as CUDA_VERSION. It allows developers to check whether their application requires a newer device driver than the one currently installed. This is important, because the driver API is backward compatible, meaning that applications, plug-ins, and libraries (including the C runtime) compiled against a particular version of the driver API will continue to work on subsequent device driver releases as illustrated in Figure 11. The driver API is not forward compatible, which means that applications, plug-ins, and libraries (including the C runtime) compiled against a particular version of the driver API will not work on previous versions of the device driver.
It is important to note that there are limitations on the mixing and matching of versions that is supported:
- Since only one version of the CUDA Driver can be installed at a time on a system, the installed driver must be of the same or higher version than the maximum Driver API version against which any application, plug-ins, or libraries that must run on that system were built.
- All plug-ins and libraries used by an application must use the same version of the CUDA Runtime unless they statically link to the Runtime, in which case multiple versions of the runtime can coexist in the same process space. Note that if nvcc is used to link the application, the static version of the CUDA Runtime library will be used by default, and all CUDA Toolkit libraries are statically linked against the CUDA Runtime.
- All plug-ins and libraries used by an application must use the same version of any libraries that use the runtime (such as cuFFT, cuBLAS, ...) unless statically linking to those libraries.
3.4. Compute Modes
On Tesla solutions running Windows Server 2008 and later or Linux, one can set any device in a system in one of the three following modes using NVIDIA's System Management Interface (nvidia-smi), which is a tool distributed as part of the driver:
- Default compute mode: Multiple host threads can use the device (by calling cudaSetDevice() on this device, when using the runtime API, or by making current a context associated to the device, when using the driver API) at the same time.
- Exclusive-process compute mode: Only one CUDA context may be created on the device across all processes in the system and that context may be current to as many threads as desired within the process that created that context.
- Exclusive-process-and-thread compute mode: Only one CUDA context may be created on the device across all processes in the system and that context may only be current to one thread at a time.
- Prohibited compute mode: No CUDA context can be created on the device.
This means, in particular, that a host thread using the runtime API without explicitly calling cudaSetDevice() might be associated with a device other than device 0 if device 0 turns out to be in the exclusive-process mode and used by another process, or in the exclusive-process-and-thread mode and used by another thread, or in prohibited mode. cudaSetValidDevices() can be used to set a device from a prioritized list of devices.
Applications may query the compute mode of a device by checking the computeMode device property (see Device Enumeration).
3.5. Mode Switches
GPUs that have a display output dedicate some DRAM memory to the so-called primary surface, which is used to refresh the display device whose output is viewed by the user. When users initiate a mode switch of the display by changing the resolution or bit depth of the display (using NVIDIA control panel or the Display control panel on Windows), the amount of memory needed for the primary surface changes. For example, if the user changes the display resolution from 1280x1024x32-bit to 1600x1200x32-bit, the system must dedicate 7.68 MB to the primary surface rather than 5.24 MB. (Full-screen graphics applications running with anti-aliasing enabled may require much more display memory for the primary surface.) On Windows, other events that may initiate display mode switches include launching a full-screen DirectX application, hitting Alt+Tab to task switch away from a full-screen DirectX application, or hitting Ctrl+Alt+Del to lock the computer.
If a mode switch increases the amount of memory needed for the primary surface, the system may have to cannibalize memory allocations dedicated to CUDA applications. Therefore, a mode switch results in any call to the CUDA runtime to fail and return an invalid context error.
3.6. Tesla Compute Cluster Mode for Windows
Using NVIDIA's System Management Interface (nvidia-smi), the Windows device driver can be put in TCC (Tesla Compute Cluster) mode for devices of the Tesla and Quadro Series of compute capability 2.0 and higher.
This mode has the following primary benefits:
- It makes it possible to use these GPUs in cluster nodes with non-NVIDIA integrated graphics;
- It makes these GPUs available via Remote Desktop, both directly and via cluster management systems that rely on Remote Desktop;
- It makes these GPUs available to applications running as a Windows service (i.e., in Session 0).
However, the TCC mode removes support for any graphics functionality.
4. Hardware Implementation
The NVIDIA GPU architecture is built around a scalable array of multithreaded Streaming Multiprocessors (SMs). When a CUDA program on the host CPU invokes a kernel grid, the blocks of the grid are enumerated and distributed to multiprocessors with available execution capacity. The threads of a thread block execute concurrently on one multiprocessor, and multiple thread blocks can execute concurrently on one multiprocessor. As thread blocks terminate, new blocks are launched on the vacated multiprocessors.
A multiprocessor is designed to execute hundreds of threads concurrently. To manage such a large amount of threads, it employs a unique architecture called SIMT (Single-Instruction, Multiple-Thread) that is described in SIMT Architecture. The instructions are pipelined to leverage instruction-level parallelism within a single thread, as well as thread-level parallelism extensively through simultaneous hardware multithreading as detailed in Hardware Multithreading. Unlike CPU cores they are issued in order however and there is no branch prediction and no speculative execution.
SIMT Architecture and Hardware Multithreading describe the architecture features of the streaming multiprocessor that are common to all devices. Compute Capability 2.x, Compute Capability 3.x, and Compute Capability 5.x provide the specifics for devices of compute capabilities 2.x, 3.x, and 5.x, respectively.
The NVIDIA GPU architecture uses a little-endian representation.
4.1. SIMT Architecture
The multiprocessor creates, manages, schedules, and executes threads in groups of 32 parallel threads called warps. Individual threads composing a warp start together at the same program address, but they have their own instruction address counter and register state and are therefore free to branch and execute independently. The term warp originates from weaving, the first parallel thread technology. A half-warp is either the first or second half of a warp. A quarter-warp is either the first, second, third, or fourth quarter of a warp.
When a multiprocessor is given one or more thread blocks to execute, it partitions them into warps and each warp gets scheduled by a warp scheduler for execution. The way a block is partitioned into warps is always the same; each warp contains threads of consecutive, increasing thread IDs with the first warp containing thread 0. Thread Hierarchy describes how thread IDs relate to thread indices in the block.
A warp executes one common instruction at a time, so full efficiency is realized when all 32 threads of a warp agree on their execution path. If threads of a warp diverge via a data-dependent conditional branch, the warp serially executes each branch path taken, disabling threads that are not on that path, and when all paths complete, the threads converge back to the same execution path. Branch divergence occurs only within a warp; different warps execute independently regardless of whether they are executing common or disjoint code paths.
The SIMT architecture is akin to SIMD (Single Instruction, Multiple Data) vector organizations in that a single instruction controls multiple processing elements. A key difference is that SIMD vector organizations expose the SIMD width to the software, whereas SIMT instructions specify the execution and branching behavior of a single thread. In contrast with SIMD vector machines, SIMT enables programmers to write thread-level parallel code for independent, scalar threads, as well as data-parallel code for coordinated threads. For the purposes of correctness, the programmer can essentially ignore the SIMT behavior; however, substantial performance improvements can be realized by taking care that the code seldom requires threads in a warp to diverge. In practice, this is analogous to the role of cache lines in traditional code: Cache line size can be safely ignored when designing for correctness but must be considered in the code structure when designing for peak performance. Vector architectures, on the other hand, require the software to coalesce loads into vectors and manage divergence manually.
Notes
The threads of a warp that are on that warp's current execution path are called the active threads, whereas threads not on the current path are inactive (disabled). Threads can be inactive because they have exited earlier than other threads of their warp, or because they are on a different branch path than the branch path currently executed by the warp, or because they are the last threads of a block whose number of threads is not a multiple of the warp size.
If a non-atomic instruction executed by a warp writes to the same location in global or shared memory for more than one of the threads of the warp, the number of serialized writes that occur to that location varies depending on the compute capability of the device (see Compute Capability 2.x, Compute Capability 3.x, and Compute Capability 5.x), and which thread performs the final write is undefined.
If an atomic instruction executed by a warp reads, modifies, and writes to the same location in global memory for more than one of the threads of the warp, each read/modify/write to that location occurs and they are all serialized, but the order in which they occur is undefined.
4.2. Hardware Multithreading
The execution context (program counters, registers, etc.) for each warp processed by a multiprocessor is maintained on-chip during the entire lifetime of the warp. Therefore, switching from one execution context to another has no cost, and at every instruction issue time, a warp scheduler selects a warp that has threads ready to execute its next instruction (the active threads of the warp) and issues the instruction to those threads.
In particular, each multiprocessor has a set of 32-bit registers that are partitioned among the warps, and a parallel data cache or shared memory that is partitioned among the thread blocks.
The number of blocks and warps that can reside and be processed together on the multiprocessor for a given kernel depends on the amount of registers and shared memory used by the kernel and the amount of registers and shared memory available on the multiprocessor. There are also a maximum number of resident blocks and a maximum number of resident warps per multiprocessor. These limits as well the amount of registers and shared memory available on the multiprocessor are a function of the compute capability of the device and are given in Appendix Compute Capabilities. If there are not enough registers or shared memory available per multiprocessor to process at least one block, the kernel will fail to launch.
The total number of warps in a block is as follows:
ceil ( T W s i z e , 1 )
- T is the number of threads per block,
- Wsize is the warp size, which is equal to 32,
- ceil(x, y) is equal to x rounded up to the nearest multiple of y.
The total number of registers and total amount of shared memory allocated for a block are documented in the CUDA Occupancy Calculator provided in the CUDA Toolkit.
5. Performance Guidelines
5.1. Overall Performance Optimization Strategies
Performance optimization revolves around three basic strategies:
- Maximize parallel execution to achieve maximum utilization;
- Optimize memory usage to achieve maximum memory throughput;
- Optimize instruction usage to achieve maximum instruction throughput.
Which strategies will yield the best performance gain for a particular portion of an application depends on the performance limiters for that portion; optimizing instruction usage of a kernel that is mostly limited by memory accesses will not yield any significant performance gain, for example. Optimization efforts should therefore be constantly directed by measuring and monitoring the performance limiters, for example using the CUDA profiler. Also, comparing the floating-point operation throughput or memory throughput - whichever makes more sense - of a particular kernel to the corresponding peak theoretical throughput of the device indicates how much room for improvement there is for the kernel.
5.2. Maximize Utilization
To maximize utilization the application should be structured in a way that it exposes as much parallelism as possible and efficiently maps this parallelism to the various components of the system to keep them busy most of the time.
5.2.1. Application Level
At a high level, the application should maximize parallel execution between the host, the devices, and the bus connecting the host to the devices, by using asynchronous functions calls and streams as described in Asynchronous Concurrent Execution. It should assign to each processor the type of work it does best: serial workloads to the host; parallel workloads to the devices.
For the parallel workloads, at points in the algorithm where parallelism is broken because some threads need to synchronize in order to share data with each other, there are two cases: Either these threads belong to the same block, in which case they should use __syncthreads() and share data through shared memory within the same kernel invocation, or they belong to different blocks, in which case they must share data through global memory using two separate kernel invocations, one for writing to and one for reading from global memory. The second case is much less optimal since it adds the overhead of extra kernel invocations and global memory traffic. Its occurrence should therefore be minimized by mapping the algorithm to the CUDA programming model in such a way that the computations that require inter-thread communication are performed within a single thread block as much as possible.
5.2.2. Device Level
At a lower level, the application should maximize parallel execution between the multiprocessors of a device.
Multiple kernels can execute concurrently on a device, so maximum utilization can also be achieved by using streams to enable enough kernels to execute concurrently as described in Asynchronous Concurrent Execution.
5.2.3. Multiprocessor Level
At an even lower level, the application should maximize parallel execution between the various functional units within a multiprocessor.
As described in Hardware Multithreading, a GPU multiprocessor relies on thread-level parallelism to maximize utilization of its functional units. Utilization is therefore directly linked to the number of resident warps. At every instruction issue time, a warp scheduler selects a warp that is ready to execute its next instruction, if any, and issues the instruction to the active threads of the warp. The number of clock cycles it takes for a warp to be ready to execute its next instruction is called the latency, and full utilization is achieved when all warp schedulers always have some instruction to issue for some warp at every clock cycle during that latency period, or in other words, when latency is completely "hidden". The number of instructions required to hide a latency of L clock cycles depends on the respective throughputs of these instructions (see Arithmetic Instructions for the throughputs of various arithmetic instructions); assuming maximum throughput for all instructions, it is:
- L for devices of compute capability 2.0 since a multiprocessor issues one instruction per warp over two clock cycles for two warps at a time, as mentioned in Compute Capability 2.x,
- 2L for devices of compute capability 2.1 since a multiprocessor issues a pair of instructions per warp over two clock cycles for two warps at a time, as mentioned in Compute Capability 2.x,
- 8L for devices of compute capability 3.x since a multiprocessor issues a pair of instructions per warp over one clock cycle for four warps at a time, as mentioned in Compute Capability 3.x.
For devices of compute capability 2.0, the two instructions issued every other cycle are for two different warps. For devices of compute capability 2.1, the four instructions issued every other cycle are two pairs for two different warps, each pair being for the same warp.
For devices of compute capability 3.x, the eight instructions issued every cycle are four pairs for four different warps, each pair being for the same warp.
The most common reason a warp is not ready to execute its next instruction is that the instruction's input operands are not available yet.
If all input operands are registers, latency is caused by register dependencies, i.e., some of the input operands are written by some previous instruction(s) whose execution has not completed yet. In the case of a back-to-back register dependency (i.e., some input operand is written by the previous instruction), the latency is equal to the execution time of the previous instruction and the warp schedulers must schedule instructions for different warps during that time. Execution time varies depending on the instruction, but it is typically about 22 clock cycles for devices of compute capability 2.x and about 11 clock cycles for devices of compute capability 3.x, which translates to 22 warps for devices of compute capability 2.x and 44 warps for devices of compute capability 3.x and higher (still assuming that warps execute instructions with maximum throughput, otherwise fewer warps are needed). For devices of compute capability 2.1 and higher, this is also assuming enough instruction-level parallelism so that schedulers are always able to issue pairs of instructions for each warp.
If some input operand resides in off-chip memory, the latency is much higher: 400 to 800 clock cycles for devices of compute capability 2.x and about 200 to 400 clock cycles for devices of compute capability 3.x. The number of warps required to keep the warp schedulers busy during such high latency periods depends on the kernel code and its degree of instruction-level parallelism. In general, more warps are required if the ratio of the number of instructions with no off-chip memory operands (i.e., arithmetic instructions most of the time) to the number of instructions with off-chip memory operands is low (this ratio is commonly called the arithmetic intensity of the program). For example, assume this ratio is 30, also assume the latencies are 600 cycles on devices of compute capability 2.x and 300 cycles on devices of compute capability 3.x. Then about 20 warps are required for devices of compute capability 2.x and about 40 for devices of compute capability 3.x (with the same assumptions as in the previous paragraph).
Another reason a warp is not ready to execute its next instruction is that it is waiting at some memory fence (Memory Fence Functions) or synchronization point (Memory Fence Functions). A synchronization point can force the multiprocessor to idle as more and more warps wait for other warps in the same block to complete execution of instructions prior to the synchronization point. Having multiple resident blocks per multiprocessor can help reduce idling in this case, as warps from different blocks do not need to wait for each other at synchronization points.
The number of blocks and warps residing on each multiprocessor for a given kernel call depends on the execution configuration of the call (Execution Configuration), the memory resources of the multiprocessor, and the resource requirements of the kernel as described in Hardware Multithreading. Register and shared memory usage are reported by the compiler when compiling with the -ptxas-options=-v option.
The total amount of shared memory required for a block is equal to the sum of the amount of statically allocated shared memory and the amount of dynamically allocated shared memory.
The number of registers used by a kernel can have a significant impact on the number of resident warps. For example, for devices of compute capability 2.x, if a kernel uses 32 registers and each block has 512 threads and requires very little shared memory, then two blocks (i.e., 32 warps) can reside on the multiprocessor since they require 2x512x32 registers, which exactly matches the number of registers available on the multiprocessor. But as soon as the kernel uses one more register, only one block (i.e., 16 warps) can be resident since two blocks would require 2x512x17 registers, which are more registers than are available on the multiprocessor. Therefore, the compiler attempts to minimize register usage while keeping register spilling (see Device Memory Accesses) and the number of instructions to a minimum. Register usage can be controlled using the maxrregcount compiler option or launch bounds as described in Launch Bounds.
Each double variable and each long long variable uses two registers.
The effect of execution configuration on performance for a given kernel call generally depends on the kernel code. Experimentation is therefore recommended. Applications can also parameterize execution configurations based on register file size and shared memory size, which depends on the compute capability of the device, as well as on the number of multiprocessors and memory bandwidth of the device, all of which can be queried using the runtime (see reference manual).
The number of threads per block should be chosen as a multiple of the warp size to avoid wasting computing resources with under-populated warps as much as possible.
5.2.3.1. Occupancy Calculator
Several API functions exist to assist programmers in choosing thread block size based on register and shared memory requirements.
- The occupancy calculator API, cudaOccupancyMaxActiveBlocksPerMultiprocessor, can provide an occupancy prediction based on the block size and shared memory usage of a kernel. This function reports occupancy in terms of the number of concurrent thread blocks per multiprocessor.
- Note that this value can be converted to other metrics. Multiplying by the number of warps per block yields the number of concurrent warps per multiprocessor; further dividing concurrent warps by max warps per multiprocessor gives the occupancy as a percentage.
- The occupancy-based launch configurator APIs, cudaOccupancyMaxPotentialBlockSize and cudaOccupancyMaxPotentialBlockSizeVariableSMem, heuristically calculate an execution configuration that achieves the maximum multiprocessor-level occupancy.
The following code sample calculates the occupancy of MyKernel. It then reports the occupancy level with the ratio between concurrent warps versus maximum warps per multiprocessor.
// Device code __global__ void MyKernel(int *d, int *a, int *b) { int idx = threadIdx.x + blockIdx.x * blockDim.x; d[idx] = a[idx] * b[idx]; } // Host code int main() { int numBlocks; // Occupancy in terms of active blocks int blockSize = 32; // These variables are used to convert occupancy to warps int device; cudaDeviceProp prop; int activeWarps; int maxWarps; cudaGetDevice(&device); cudaGetDeviceProperties(&prop, device); cudaOccupancyMaxActiveBlocksPerMultiprocessor( &numBlocks, MyKernel, blockSize, 0); activeWarps = numBlocks * blockSize / prop.warpSize; maxWarps = prop.maxThreadsPerMultiProcessor / prop.warpSize; std::cout << "Occupancy: " << (double)activeWarps / maxWarps * 100 << "%" << std::endl; return 0; }
The following code sample configures an occupancy-based kernel launch of MyKernel according to the user input.
// Device code __global__ void MyKernel(int *array, int arrayCount) { int idx = threadIdx.x + blockIdx.x * blockDim.x; if (idx < arrayCount) { array[idx] *= array[idx]; } } // Host code int launchMyKernel(int *array, int arrayCount) { int blockSize; // The launch configurator returned block size int minGridSize; // The minimum grid size needed to achieve the // maximum occupancy for a full device // launch int gridSize; // The actual grid size needed, based on input // size cudaOccupancyMaxPotentialBlockSize( &minGridSize, &blockSize, (void*)MyKernel, 0, arrayCount); // Round up according to array size gridSize = (arrayCount + blockSize - 1) / blockSize; MyKernel<<<gridSize, blockSize>>>(array, arrayCount); cudaDeviceSynchronize(); // If interested, the occupancy can be calculated with // cudaOccupancyMaxActiveBlocksPerMultiprocessor return 0; }
The CUDA Toolkit also provides a self-documenting, standalone occupancy calculator and launch configurator implementation in <CUDA_Toolkit_Path>/include/cuda_occupancy.h for any use cases that cannot depend on the CUDA software stack. A spreadsheet version of the occupancy calculator is also provided. The spreadsheet version is particularly useful as a learning tool that visualizes the impact of changes to the parameters that affect occupancy (block size, registers per thread, and shared memory per thread).
5.3. Maximize Memory Throughput
The first step in maximizing overall memory throughput for the application is to minimize data transfers with low bandwidth.
That means minimizing data transfers between the host and the device, as detailed in Data Transfer between Host and Device, since these have much lower bandwidth than data transfers between global memory and the device.
That also means minimizing data transfers between global memory and the device by maximizing use of on-chip memory: shared memory and caches (i.e., L1 cache available on devices of compute capability 2.x and 3.x, L2 cache available on devices of compute capability 2.x and higher, texture cache and constant cache available on all devices).
Shared memory is equivalent to a user-managed cache: The application explicitly allocates and accesses it. As illustrated in CUDA C Runtime, a typical programming pattern is to stage data coming from device memory into shared memory; in other words, to have each thread of a block:
- Load data from device memory to shared memory,
- Synchronize with all the other threads of the block so that each thread can safely read shared memory locations that were populated by different threads,
- Process the data in shared memory,
- Synchronize again if necessary to make sure that shared memory has been updated with the results,
- Write the results back to device memory.
For some applications (e.g., for which global memory access patterns are data-dependent), a traditional hardware-managed cache is more appropriate to exploit data locality. As mentioned in Compute Capability 2.x and Compute Capability 3.x, for devices of compute capability 2.x and 3.x, the same on-chip memory is used for both L1 and shared memory, and how much of it is dedicated to L1 versus shared memory is configurable for each kernel call.
The throughput of memory accesses by a kernel can vary by an order of magnitude depending on access pattern for each type of memory. The next step in maximizing memory throughput is therefore to organize memory accesses as optimally as possible based on the optimal memory access patterns described in Device Memory Accesses. This optimization is especially important for global memory accesses as global memory bandwidth is low, so non-optimal global memory accesses have a higher impact on performance.
5.3.1. Data Transfer between Host and Device
Applications should strive to minimize data transfer between the host and the device. One way to accomplish this is to move more code from the host to the device, even if that means running kernels with low parallelism computations. Intermediate data structures may be created in device memory, operated on by the device, and destroyed without ever being mapped by the host or copied to host memory.
Also, because of the overhead associated with each transfer, batching many small transfers into a single large transfer always performs better than making each transfer separately.
On systems with a front-side bus, higher performance for data transfers between host and device is achieved by using page-locked host memory as described in Page-Locked Host Memory.
In addition, when using mapped page-locked memory (Mapped Memory), there is no need to allocate any device memory and explicitly copy data between device and host memory. Data transfers are implicitly performed each time the kernel accesses the mapped memory. For maximum performance, these memory accesses must be coalesced as with accesses to global memory (see Device Memory Accesses). Assuming that they are and that the mapped memory is read or written only once, using mapped page-locked memory instead of explicit copies between device and host memory can be a win for performance.
On integrated systems where device memory and host memory are physically the same, any copy between host and device memory is superfluous and mapped page-locked memory should be used instead. Applications may query a device is integrated by checking that the integrated device property (see Device Enumeration) is equal to 1.
5.3.2. Device Memory Accesses
An instruction that accesses addressable memory (i.e., global, local, shared, constant, or texture memory) might need to be re-issued multiple times depending on the distribution of the memory addresses across the threads within the warp. How the distribution affects the instruction throughput this way is specific to each type of memory and described in the following sections. For example, for global memory, as a general rule, the more scattered the addresses are, the more reduced the throughput is.
Global Memory
Global memory resides in device memory and device memory is accessed via 32-, 64-, or 128-byte memory transactions. These memory transactions must be naturally aligned: Only the 32-, 64-, or 128-byte segments of device memory that are aligned to their size (i.e., whose first address is a multiple of their size) can be read or written by memory transactions.
When a warp executes an instruction that accesses global memory, it coalesces the memory accesses of the threads within the warp into one or more of these memory transactions depending on the size of the word accessed by each thread and the distribution of the memory addresses across the threads. In general, the more transactions are necessary, the more unused words are transferred in addition to the words accessed by the threads, reducing the instruction throughput accordingly. For example, if a 32-byte memory transaction is generated for each thread's 4-byte access, throughput is divided by 8.
How many transactions are necessary and how much throughput is ultimately affected varies with the compute capability of the device. Compute Capability 2.x, Compute Capability 3.x, and Compute Capability 5.x give more details on how global memory accesses are handled for various compute capabilities.
To maximize global memory throughput, it is therefore important to maximize coalescing by:
- Following the most optimal access patterns based on Compute Capability 2.x and Compute Capability 3.x,
- Using data types that meet the size and alignment requirement detailed in Device Memory Accesses,
- Padding data in some cases, for example, when accessing a two-dimensional array as described in Device Memory Accesses.
Size and Alignment Requirement
Global memory instructions support reading or writing words of size equal to 1, 2, 4, 8, or 16 bytes. Any access (via a variable or a pointer) to data residing in global memory compiles to a single global memory instruction if and only if the size of the data type is 1, 2, 4, 8, or 16 bytes and the data is naturally aligned (i.e., its address is a multiple of that size).
If this size and alignment requirement is not fulfilled, the access compiles to multiple instructions with interleaved access patterns that prevent these instructions from fully coalescing. It is therefore recommended to use types that meet this requirement for data that resides in global memory.
The alignment requirement is automatically fulfilled for the built-in types of char, short, int, long, longlong, float, double like float2 or float4.
For structures, the size and alignment requirements can be enforced by the compiler using the alignment specifiers __align__(8) or __align__(16), such as
struct __align__(8) { float x; float y; };
or
struct __align__(16) { float x; float y; float z; };
Any address of a variable residing in global memory or returned by one of the memory allocation routines from the driver or runtime API is always aligned to at least 256 bytes.
Reading non-naturally aligned 8-byte or 16-byte words produces incorrect results (off by a few words), so special care must be taken to maintain alignment of the starting address of any value or array of values of these types. A typical case where this might be easily overlooked is when using some custom global memory allocation scheme, whereby the allocations of multiple arrays (with multiple calls to cudaMalloc() or cuMemAlloc()) is replaced by the allocation of a single large block of memory partitioned into multiple arrays, in which case the starting address of each array is offset from the block's starting address.
Two-Dimensional Arrays
A common global memory access pattern is when each thread of index (tx,ty) uses the following address to access one element of a 2D array of width width, located at address BaseAddress of type type* (where type meets the requirement described in Maximize Utilization):
BaseAddress + width * ty + tx
For these accesses to be fully coalesced, both the width of the thread block and the width of the array must be a multiple of the warp size.
In particular, this means that an array whose width is not a multiple of this size will be accessed much more efficiently if it is actually allocated with a width rounded up to the closest multiple of this size and its rows padded accordingly. The cudaMallocPitch() and cuMemAllocPitch() functions and associated memory copy functions described in the reference manual enable programmers to write non-hardware-dependent code to allocate arrays that conform to these constraints.
Local Memory
Local memory accesses only occur for some automatic variables as mentioned in Variable Type Qualifiers. Automatic variables that the compiler is likely to place in local memory are:
- Arrays for which it cannot determine that they are indexed with constant quantities,
- Large structures or arrays that would consume too much register space,
- Any variable if the kernel uses more registers than available (this is also known as register spilling).
Inspection of the PTX assembly code (obtained by compiling with the -ptx or-keep option) will tell if a variable has been placed in local memory during the first compilation phases as it will be declared using the .local mnemonic and accessed using the ld.local and st.local mnemonics. Even if it has not, subsequent compilation phases might still decide otherwise though if they find it consumes too much register space for the targeted architecture: Inspection of the cubin object using cuobjdump will tell if this is the case. Also, the compiler reports total local memory usage per kernel (lmem) when compiling with the --ptxas-options=-v option. Note that some mathematical functions have implementation paths that might access local memory.
The local memory space resides in device memory, so local memory accesses have same high latency and low bandwidth as global memory accesses and are subject to the same requirements for memory coalescing as described in Device Memory Accesses. Local memory is however organized such that consecutive 32-bit words are accessed by consecutive thread IDs. Accesses are therefore fully coalesced as long as all threads in a warp access the same relative address (e.g., same index in an array variable, same member in a structure variable).
On devices of compute capability 2.x and 3.x, local memory accesses are always cached in L1 and L2 in the same way as global memory accesses (see Compute Capability 2.x and Compute Capability 3.x).
On devices of compute capability 5.x, local memory accesses are always cached in L2 in the same way as global memory accesses (see Compute Capability 5.x).
Shared Memory
Because it is on-chip, shared memory has much higher bandwidth and much lower latency than local or global memory.
To achieve high bandwidth, shared memory is divided into equally-sized memory modules, called banks, which can be accessed simultaneously. Any memory read or write request made of n addresses that fall in n distinct memory banks can therefore be serviced simultaneously, yielding an overall bandwidth that is n times as high as the bandwidth of a single module.
However, if two addresses of a memory request fall in the same memory bank, there is a bank conflict and the access has to be serialized. The hardware splits a memory request with bank conflicts into as many separate conflict-free requests as necessary, decreasing throughput by a factor equal to the number of separate memory requests. If the number of separate memory requests is n, the initial memory request is said to cause n-way bank conflicts.
To get maximum performance, it is therefore important to understand how memory addresses map to memory banks in order to schedule the memory requests so as to minimize bank conflicts. This is described in Compute Capability 2.x, Compute Capability 3.x, and Compute Capability 5.x for devices of compute capability 2.x, 3.x, and 5.x, respectively.
Constant Memory
The constant memory space resides in device memory and is cached in the constant cache mentioned in Compute Capability 2.x.
A request is then split into as many separate requests as there are different memory addresses in the initial request, decreasing throughput by a factor equal to the number of separate requests.
The resulting requests are then serviced at the throughput of the constant cache in case of a cache hit, or at the throughput of device memory otherwise.
Texture and Surface Memory
The texture and surface memory spaces reside in device memory and are cached in texture cache, so a texture fetch or surface read costs one memory read from device memory only on a cache miss, otherwise it just costs one read from texture cache. The texture cache is optimized for 2D spatial locality, so threads of the same warp that read texture or surface addresses that are close together in 2D will achieve best performance. Also, it is designed for streaming fetches with a constant latency; a cache hit reduces DRAM bandwidth demand but not fetch latency.
Reading device memory through texture or surface fetching present some benefits that can make it an advantageous alternative to reading device memory from global or constant memory:
- If the memory reads do not follow the access patterns that global or constant memory reads must follow to get good performance, higher bandwidth can be achieved providing that there is locality in the texture fetches or surface reads;
- Addressing calculations are performed outside the kernel by dedicated units;
- Packed data may be broadcast to separate variables in a single operation;
- 8-bit and 16-bit integer input data may be optionally converted to 32 bit floating-point values in the range [0.0, 1.0] or [-1.0, 1.0] (see Texture Memory).
5.4. Maximize Instruction Throughput
To maximize instruction throughput the application should:
- Minimize the use of arithmetic instructions with low throughput; this includes trading precision for speed when it does not affect the end result, such as using intrinsic instead of regular functions (intrinsic functions are listed in Intrinsic Functions), single-precision instead of double-precision, or flushing denormalized numbers to zero;
- Minimize divergent warps caused by control flow instructions as detailed in Control Flow Instructions
- Reduce the number of instructions, for example, by optimizing out synchronization points whenever possible as described in Synchronization Instruction or by using restricted pointers as described in __restrict__.
In this section, throughputs are given in number of operations per clock cycle per multiprocessor. For a warp size of 32, one instruction corresponds to 32 operations, so if N is the number of operations per clock cycle, the instruction throughput is N/32 instructions per clock cycle.
All throughputs are for one multiprocessor. They must be multiplied by the number of multiprocessors in the device to get throughput for the whole device.
5.4.1. Arithmetic Instructions
Table 2 gives the throughputs of the arithmetic instructions that are natively supported in hardware for devices of various compute capabilities.
Compute Capability | ||||||
---|---|---|---|---|---|---|
2.0 | 2.1 | 3.0, 3.2 | 3.5, 3.7 | 5.0, 5.2 | 5.3 | |
16-bit floating-point add, multiply, multiply-add | N/A | N/A | N/A | N/A | N/A | 256 |
32-bit floating-point add, multiply, multiply-add | 32 | 48 | 192 | 192 | 128 | 128 |
64-bit floating-point add, multiply, multiply-add | 161 | 4 | 8 | 642 | 4 | 4 |
32-bit floating-point reciprocal, reciprocal square root, base-2 logarithm (__log2f), base 2 exponential (exp2f), sine (__sinf), cosine (__cosf) | 4 | 8 | 32 | 32 | 32 | 32 |
32-bit integer add, extended-precision add, subtract, extended-precision subtract | 32 | 48 | 160 | 160 | 128 | 128 |
32-bit integer multiply, multiply-add, extended-precision multiply-add | 16 | 16 | 32 | 32 | Multiple instructions | Multiple instructions |
24-bit integer multiply (__[u]mul24) | Multiple instructions | Multiple instructions | Multiple instructions | Multiple instructions | Multiple instructions | Multiple instructions |
32-bit integer shift | 16 | 16 | 32 | 643 | 64 | 64 |
compare, minimum, maximum | 32 | 48 | 160 | 160 | 64 | 64 |
32-bit integer bit reverse, bit field extract/insert | 16 | 16 | 32 | 32 | 64 | 64 |
32-bit bitwise AND, OR, XOR | 32 | 48 | 160 | 160 | 128 | 128 |
count of leading zeros, most significant non-sign bit | 16 | 16 | 32 | 32 | Multiple instructions | Multiple instructions |
population count | 16 | 16 | 32 | 32 | 32 | 32 |
warp shuffle | N/A | N/A | 32 | 32 | 32 | 32 |
sum of absolute difference | 16 | 16 | 32 | 32 | 64 | 64 |
SIMD video instructions vabsdiff2 | N/A | N/A | 160 | 160 | Multiple instructions | Multiple instructions |
SIMD video instructions vabsdiff4 | N/A | N/A | 160 | 160 | Multiple instructions | Multiple instructions |
All other SIMD video instructions | 16 | 16 | 32 | 32 | Multiple instructions | Multiple instructions |
Type conversions from 8-bit and 16-bit integer to 32-bit types | 16 | 16 | 128 | 128 | 32 | 32 |
Type conversions from and to 64-bit types | 164 | 4 | 8 | 325 | 4 | 4 |
All other type conversions | 16 | 16 | 32 | 32 | 32 | 32 |
Other instructions and functions are implemented on top of the native instructions. The implementation may be different for devices of different compute capabilities, and the number of native instructions after compilation may fluctuate with every compiler version. For complicated functions, there can be multiple code paths depending on input. cuobjdump can be used to inspect a particular implementation in a cubin object.
The implementation of some functions are readily available on the CUDA header files (math_functions.h, device_functions.h, ...).
In general, code compiled with -ftz=true (denormalized numbers are flushed to zero) tends to have higher performance than code compiled with -ftz=false. Similarly, code compiled with -prec div=false (less precise division) tends to have higher performance code than code compiled with -prec div=true, and code compiled with -prec-sqrt=false (less precise square root) tends to have higher performance than code compiled with -prec-sqrt=true. The nvcc user manual describes these compilation flags in more details.
Single-Precision Floating-Point Division
__fdividef(x, y) (see Intrinsic Functions) provides faster single-precision floating-point division than the division operator.
Single-Precision Floating-Point Reciprocal Square Root
To preserve IEEE-754 semantics the compiler can optimize 1.0/sqrtf() into rsqrtf() only when both reciprocal and square root are approximate, (i.e., with -prec-div=false and -prec-sqrt=false). It is therefore recommended to invoke rsqrtf() directly where desired.
Single-Precision Floating-Point Square Root
Single-precision floating-point square root is implemented as a reciprocal square root followed by a reciprocal instead of a reciprocal square root followed by a multiplication so that it gives correct results for 0 and infinity.
Sine and Cosine
sinf(x), cosf(x), tanf(x), sincosf(x), and corresponding double-precision instructions are much more expensive and even more so if the argument x is large in magnitude.
More precisely, the argument reduction code (see Mathematical Functions for implementation) comprises two code paths referred to as the fast path and the slow path, respectively.
The fast path is used for arguments sufficiently small in magnitude and essentially consists of a few multiply-add operations. The slow path is used for arguments large in magnitude and consists of lengthy computations required to achieve correct results over the entire argument range.
At present, the argument reduction code for the trigonometric functions selects the fast path for arguments whose magnitude is less than 105615.0f for the single-precision functions, and less than 2147483648.0 for the double-precision functions.
As the slow path requires more registers than the fast path, an attempt has been made to reduce register pressure in the slow path by storing some intermediate variables in local memory, which may affect performance because of local memory high latency and bandwidth (see Device Memory Accesses). At present, 28 bytes of local memory are used by single-precision functions, and 44 bytes are used by double-precision functions. However, the exact amount is subject to change.
Due to the lengthy computations and use of local memory in the slow path, the throughput of these trigonometric functions is lower by one order of magnitude when the slow path reduction is required as opposed to the fast path reduction.
Integer Arithmetic
Integer division and modulo operation are costly as they compiler to up to 20 instructions. They can be replaced with bitwise operations in some cases: If n is a power of 2, (i/n) is equivalent to (i>>log2(n)) and (i%n) is equivalent to (i&(n-1)); the compiler will perform these conversions if n is literal.
__brev and __popc map to a single instruction and __brevll and __popcll to a few instructions.
__[u]mul24 are legacy intrinsic functions that have no longer any reason to be used.
Type Conversion
Sometimes, the compiler must insert conversion instructions, introducing additional execution cycles. This is the case for:
- Functions operating on variables of type char or short whose operands generally need to be converted to int,
- Double-precision floating-point constants (i.e., those constants defined without any type suffix) used as input to single-precision floating-point computations (as mandated by C/C++ standards).
This last case can be avoided by using single-precision floating-point constants, defined with an f suffix such as 3.141592653589793f, 1.0f, 0.5f.
5.4.2. Control Flow Instructions
Any flow control instruction (if, switch, do, for, while) can significantly impact the effective instruction throughput by causing threads of the same warp to diverge (i.e., to follow different execution paths). If this happens, the different executions paths have to be serialized, increasing the total number of instructions executed for this warp. When all the different execution paths have completed, the threads converge back to the same execution path.
To obtain best performance in cases where the control flow depends on the thread ID, the controlling condition should be written so as to minimize the number of divergent warps. This is possible because the distribution of the warps across the block is deterministic as mentioned in SIMT Architecture. A trivial example is when the controlling condition only depends on (threadIdx / warpSize) where warpSize is the warp size. In this case, no warp diverges since the controlling condition is perfectly aligned with the warps.
Sometimes, the compiler may unroll loops or it may optimize out if or switch statements by using branch predication instead, as detailed below. In these cases, no warp can ever diverge. The programmer can also control loop unrolling using the #pragma unroll directive (see #pragma unroll).
When using branch predication none of the instructions whose execution depends on the controlling condition gets skipped. Instead, each of them is associated with a per-thread condition code or predicate that is set to true or false based on the controlling condition and although each of these instructions gets scheduled for execution, only the instructions with a true predicate are actually executed. Instructions with a false predicate do not write results, and also do not evaluate addresses or read operands.
The compiler replaces a branch instruction with predicated instructions only if the number of instructions controlled by the branch condition is less or equal to a certain threshold: If the compiler determines that the condition is likely to produce many divergent warps, this threshold is 7, otherwise it is 4.
5.4.3. Synchronization Instruction
Throughput for __syncthreads() is 16 operations per clock cycle for devices of compute capability 2.x and 128 operations per clock cycle for devices of compute capability 3.x.
Note that __syncthreads() can impact performance by forcing the multiprocessor to idle as detailed in Device Memory Accesses.
A. CUDA-Enabled GPUs
http://developer.nvidia.com/cuda-gpus lists all CUDA-enabled devices with their compute capability.
The compute capability, number of multiprocessors, clock frequency, total amount of device memory, and other properties can be queried using the runtime (see reference manual).
B. C Language Extensions
B.1. Function Type Qualifiers
Function type qualifiers specify whether a function executes on the host or on the device and whether it is callable from the host or from the device.
B.1.1. __device__
The __device__ qualifier declares a function that is:
- Executed on the device,
- Callable from the device only.
B.1.2. __global__
The __global__ qualifier declares a function as being a kernel. Such a function is:
- Executed on the device,
- Callable from the host,
- Callable from the device for devices of compute capability 3.x (see CUDA Dynamic Parallelism for more details).
__global__ functions must have void return type.
Any call to a __global__ function must specify its execution configuration as described in Execution Configuration.
A call to a __global__ function is asynchronous, meaning it returns before the device has completed its execution.
B.1.3. __host__
The __host__ qualifier declares a function that is:
- Executed on the host,
- Callable from the host only.
It is equivalent to declare a function with only the __host__ qualifier or to declare it without any of the __host__, __device__, or __global__ qualifier; in either case the function is compiled for the host only.
The __global__ and __host__ qualifiers cannot be used together.
The __device__ and __host__ qualifiers can be used together however, in which case the function is compiled for both the host and the device. The __CUDA_ARCH__ macro introduced in Application Compatibility can be used to differentiate code paths between host and device:
__host__ __device__ func() { #if __CUDA_ARCH__ >= 500 // Device code path for compute capability 5.x #elif __CUDA_ARCH__ >= 300 // Device code path for compute capability 3.x #elif __CUDA_ARCH__ >= 200 // Device code path for compute capability 2.x #elif !defined(__CUDA_ARCH__) // Host code path #endif }
B.1.4. __noinline__ and __forceinline__
The compiler inlines any __device__ function when deemed appropriate.
The __noinline__ function qualifier can be used as a hint for the compiler not to inline the function if possible. The function body must still be in the same file where it is called.
The __forceinline__ function qualifier can be used to force the compiler to inline the function.
B.2. Variable Type Qualifiers
Variable type qualifiers specify the memory location on the device of a variable.
An automatic variable declared in device code without any of the __device__, __shared__ and __constant__ qualifiers described in this section generally resides in a register. However in some cases the compiler might choose to place it in local memory, which can have adverse performance consequences as detailed in Device Memory Accesses.
B.2.1. __device__
The __device__ qualifier declares a variable that resides on the device.
At most one of the other type qualifiers defined in the next two sections may be used together with __device__ to further specify which memory space the variable belongs to. If none of them is present, the variable:
- Resides in global memory space.
- Has the lifetime of an application.
- Is accessible from all the threads within the grid and from the host through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol()).
B.2.2. __constant__
The __constant__ qualifier, optionally used together with __device__, declares a variable that:
- Resides in constant memory space,
- Has the lifetime of an application,
- Is accessible from all the threads within the grid and from the host through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol()).
B.2.4. __managed__
The __managed__ qualifier, optionally used together with __device__, declares a variable that:
- Can be referenced from both device and host code, e.g., its address can be taken or it can be read or written directly from a device or host function.
- Has the lifetime of an application.
B.2.5. __restrict__
nvcc supports restricted pointers via the __restrict__ keyword.
Restricted pointers were introduced in C99 to alleviate the aliasing problem that exists in C-type languages, and which inhibits all kind of optimization from code re-ordering to common sub-expression elimination.
Here is an example subject to the aliasing issue, where use of restricted pointer can help the compiler to reduce the number of instructions:
void foo(const float* a, const float* b, float* c) { c[0] = a[0] * b[0]; c[1] = a[0] * b[0]; c[2] = a[0] * b[0] * a[1]; c[3] = a[0] * a[1]; c[4] = a[0] * b[0]; c[5] = b[0]; ... }
In C-type languages, the pointers a, b, and c may be aliased, so any write through c could modify elements of a or b. This means that to guarantee functional correctness, the compiler cannot load a[0] and b[0] into registers, multiply them, and store the result to both c[0] and c[1], because the results would differ from the abstract execution model if, say, a[0] is really the same location as c[0]. So the compiler cannot take advantage of the common sub-expression. Likewise, the compiler cannot just reorder the computation of c[4] into the proximity of the computation of c[0] and c[1] because the preceding write to c[3] could change the inputs to the computation of c[4].
By making a, b, and c restricted pointers, the programmer asserts to the compiler that the pointers are in fact not aliased, which in this case means writes through c would never overwrite elements of a or b. This changes the function prototype as follows:
void foo(const float* __restrict__ a, const float* __restrict__ b, float* __restrict__ c);
Note that all pointer arguments need to be made restricted for the compiler optimizer to derive any benefit. With the __restrict__ keywords added, the compiler can now reorder and do common sub-expression elimination at will, while retaining functionality identical with the abstract execution model:
void foo(const float* __restrict__ a, const float* __restrict__ b, float* __restrict__ c) { float t0 = a[0]; float t1 = b[0]; float t2 = t0 * t2; float t3 = a[1]; c[0] = t2; c[1] = t2; c[4] = t2; c[2] = t2 * t3; c[3] = t0 * t3; c[5] = t1; ... }
The effects here are a reduced number of memory accesses and reduced number of computations. This is balanced by an increase in register pressure due to "cached" loads and common sub-expressions.
Since register pressure is a critical issue in many CUDA codes, use of restricted pointers can have negative performance impact on CUDA code, due to reduced occupancy.
B.3. Built-in Vector Types
B.3.1. char, short, int, long, longlong, float, double
int2 make_int2(int x, int y);which creates a vector of type int2 with value (x, y).
In host code, the alignment requirement of a vector type is equal to the alignment requirement of its base type. This is not always the case in device code as detailed in Table 3.
Type | Alignment |
---|---|
char1, uchar1 | 1 |
char2, uchar2 | 2 |
char3, uchar3 | 1 |
char4, uchar4 | 4 |
short1, ushort1 | 2 |
short2, ushort2 | 4 |
short3, ushort3 | 2 |
short4, ushort4 | 8 |
int1, uint1 | 4 |
int2, uint2 | 8 |
int3, uint3 | 4 |
int4, uint4 | 16 |
long1, ulong1 | 4 if sizeof(long) is equal to sizeof(int) 8, otherwise |
long2, ulong2 | 8 if sizeof(long) is equal to sizeof(int), 16, otherwise |
long3, ulong3 | 4 if sizeof(long) is equal to sizeof(int), 8, otherwise |
long4, ulong4 | 16 |
longlong1, ulonglong1 | 8 |
longlong2, ulonglong2 | 16 |
float1 | 4 |
float2 | 8 |
float3 | 4 |
float4 | 16 |
double1 | 8 |
double2 | 16 |
B.3.2. dim3
This type is an integer vector type based on uint3 that is used to specify dimensions. When defining a variable of type dim3, any component left unspecified is initialized to 1.
B.4. Built-in Variables
Built-in variables specify the grid and block dimensions and the block and thread indices. They are only valid within functions that are executed on the device.
B.4.2. blockIdx
This variable is of type uint3 (see char, short, int, long, longlong, float, double) and contains the block index within the grid.
B.4.4. threadIdx
This variable is of type uint3 (see char, short, int, long, longlong, float, double ) and contains the thread index within the block.
B.4.5. warpSize
This variable is of type int and contains the warp size in threads (see SIMT Architecture for the definition of a warp).
B.5. Memory Fence Functions
- The order in which a CUDA thread writes data to shared memory, global memory, page-locked host memory, or the memory of a peer device is not necessarily the order in which the data is observed being written by another CUDA or host thread;
- The order in which a CUDA thread reads data from shared memory, global memory, page-locked host memory, or the memory of a peer device is not necessarily the order in which the read instructions appear in the program for instructions that are independent of each other.
__device__ volatile int X = 1, Y = 2; __device__ void writeXY() { X = 10; Y = 20; } __device__ void readXY() { int A = X; int B = Y; }it is possible that B ends up equal to 2 and A equal to 10 for thread 2:
- either because at the time thread 2 reads X and Y, thread 1's write to X has happened from thread 2's perspective, but thread 1's write to Y has not,
- or because thread 2 reads Y before X and thread 1's writes to X and Y happen after thread 2's read of Y and before thread 2's read of X.
- A equal to 1 and B equal to 2 (thread 1's writes to X and Y happen after thread 2's read of X and Y),
- A equal to 10 and B equal to 2 (thread 1's write to X happens before thread 2's read of X and thread 1's write to Y happens after thread 2's read of Y),
- A equal to 10 and B equal to 20 (thread 1's writes to X and Y happen before thread 2's read of X and Y),
Memory fence functions can be used to enforce some ordering.
void __threadfence_block();
- All writes to shared and global memory made by the calling thread before the call to __threadfence_block() are observed by all threads in the block of the calling thread as occurring before all writes to shared memory and global memory made by the calling thread after the call to __threadfence_block();
- All reads from shared memory and global memory made by the calling thread before the call to __threadfence_block() are performed before all reads from shared memory and global memory made by the calling thread after the call to __threadfence_block().
void __threadfence();
acts as __threadfence_block() for all threads in the block of the calling thread and also ensures that no writes to global memory made by the calling thread after the call to __threadfence() are observed by any thread in the device as occurring before any write to global memory made by the calling thread before the call to __threadfence(). Note that for this ordering guarantee to be true, the observing threads must truly observe global memory and not cached versions of it; this is ensured by using the volatile keyword as detailed in Volatile Qualifier.
void __threadfence_system();
- All writes to global memory, page-locked host memory, and the memory of a peer device made by the calling thread before the call to __threadfence_system() are observed by all threads in the device, host threads, and all threads in peer devices as occurring before all writes to global memory, page-locked host memory, and the memory of a peer device made by the calling thread after the call to __threadfence_system().
- All reads from shared memory, global memory, page-locked host memory, and the memory of a peer device made by the calling thread before the call to __threadfence_system() are performed before all reads from shared memory, global memory, page-locked host memory, and the memory of a peer device made by the calling thread after the call to __threadfence_system().
__threadfence_system() is only supported by devices of compute capability 2.x and higher.
In the previous code sample, inserting a fence function call between X = 10; and Y = 20; and between int A = X; and int B = Y; would ensure that for thread 1, A will always be equal to 10 if B is equal to 20. If thread 1 and 2 belong to the same block, it is enough to use __threadfence_block(). If thread 1 and 2 do not belong to the same block, __threadfence() must be used if they are CUDA threads from the same device and __threadfence_system() must be used if they are CUDA threads from two different devices.
A common use case is when threads consume some data produced by other threads as illustrated by the following code sample of a kernel that computes the sum of an array of N numbers in one call. Each block first sums a subset of the array and stores the result in global memory. When all blocks are done, the last block done reads each of these partial sums from global memory and sums them to obtain the final result. In order to determine which block is finished last, each block atomically increments a counter to signal that it is done with computing and storing its partial sum (see Atomic Functions about atomic functions). The last block is the one that receives the counter value equal to gridDim.x-1. If no fence is placed between storing the partial sum and incrementing the counter, the counter might increment before the partial sum is stored and therefore, might reach gridDim.x-1 and let the last block start reading partial sums before they have been actually updated in memory.
Memory fence functions only affect the ordering of memory operations by a thread; they do not ensure that these memory operations are visible to other threads (like __syncthreads() does for threads within a block (see Synchronization Functions)). In the code sample below, the visibility of memory operations on the result variable is ensured by declaring it as volatile (see Volatile Qualifier).
__device__ unsigned int count = 0; __shared__ bool isLastBlockDone; __global__ void sum(const float* array, unsigned int N, volatile float* result) { // Each block sums a subset of the input array. float partialSum = calculatePartialSum(array, N); if (threadIdx.x == 0) { // Thread 0 of each block stores the partial sum // to global memory. The compiler will use // a store operation that bypasses the L1 cache // since the "result" variable is declared as // volatile. This ensures that the threads of // the last block will read the correct partial // sums computed by all other blocks. result[blockIdx.x] = partialSum; // Thread 0 makes sure that the incrementation // of the "count" variable is only performed after // the partial sum has been written to global memory. __threadfence(); // Thread 0 signals that it is done. unsigned int value = atomicInc(&count, gridDim.x); // Thread 0 determines if its block is the last // block to be done. isLastBlockDone = (value == (gridDim.x - 1)); } // Synchronize to make sure that each thread reads // the correct value of isLastBlockDone. __syncthreads(); if (isLastBlockDone) { // The last block sums the partial sums // stored in result[0 .. gridDim.x-1] float totalSum = calculateTotalSum(result); if (threadIdx.x == 0) { // Thread 0 of last block stores the total sum // to global memory and resets the count // varialble, so that the next kernel call // works properly. result[0] = totalSum; count = 0; } } }
B.6. Synchronization Functions
void __syncthreads();
waits until all threads in the thread block have reached this point and all global and shared memory accesses made by these threads prior to __syncthreads() are visible to all threads in the block.
__syncthreads() is used to coordinate communication between the threads of the same block. When some threads within a block access the same addresses in shared or global memory, there are potential read-after-write, write-after-read, or write-after-write hazards for some of these memory accesses. These data hazards can be avoided by synchronizing threads in-between these accesses.
__syncthreads() is allowed in conditional code but only if the conditional evaluates identically across the entire thread block, otherwise the code execution is likely to hang or produce unintended side effects.
Devices of compute capability 2.x and higher support three variations of __syncthreads() described below.
int __syncthreads_count(int predicate);
is identical to __syncthreads() with the additional feature that it evaluates predicate for all threads of the block and returns the number of threads for which predicate evaluates to non-zero.
int __syncthreads_and(int predicate);
is identical to __syncthreads() with the additional feature that it evaluates predicate for all threads of the block and returns non-zero if and only if predicate evaluates to non-zero for all of them.
int __syncthreads_or(int predicate);
is identical to __syncthreads() with the additional feature that it evaluates predicate for all threads of the block and returns non-zero if and only if predicate evaluates to non-zero for any of them.
B.7. Mathematical Functions
The reference manual lists all C/C++ standard library mathematical functions that are supported in device code and all intrinsic functions that are only supported in device code.
Mathematical Functions provides accuracy information for some of these functions when relevant.
B.8. Texture Functions
Texture objects are described in Texture Object API
Texture references are described in Texture Reference API
Texture fetching is described in Texture Fetching.
B.8.1. Texture Object API
B.8.1.1. tex1Dfetch()
template<class T>
T tex1Dfetch(cudaTextureObject_t texObj, int x);
fetches from the region of linear memory specified by the one-dimensional texture object texObj using integer texture coordinate x. tex1Dfetch() only works with non-normalized coordinates, so only the border and clamp addressing modes are supported. It does not perform any texture filtering. For integer types, it may optionally promote the integer to single-precision floating point.
B.8.1.2. tex1D()
template<class T>
T tex1D(cudaTextureObject_t texObj, float x);
fetches from the CUDA array specified by the one-dimensional texture object texObj using texture coordinate x.
B.8.1.3. tex1DLod()
template<class T> T tex1DLod(cudaTextureObject_t texObj, float x, float level);
fetches from the CUDA array specified by the one-dimensional texture object texObj using texture coordinate x at the level-of-detail level.
B.8.1.4. tex1DGrad()
template<class T> T tex1DGrad(cudaTextureObject_t texObj, float x, float dx, float dy);
fetches from the CUDA array specified by the one-dimensional texture object texObj using texture coordinate x. The level-of-detail is derived from the X-gradient dx and Y-gradient dy.
B.8.1.5. tex2D()
template<class T> T tex2D(cudaTextureObject_t texObj, float x, float y);
fetches from the CUDA array or the region of linear memory specified by the two-dimensional texture object texObj using texture coordinate (x,y).
B.8.1.6. tex2DLod()
template<class T> tex2DLod(cudaTextureObject_t texObj, float x, float y, float level);
fetches from the CUDA array or the region of linear memory specified by the two-dimensional texture object texObj using texture coordinate (x,y) at level-of-detail level.
B.8.1.7. tex2DGrad()
template<class T> T tex2DGrad(cudaTextureObject_t texObj, float x, float y, float2 dx, float2 dy);
fetches from the CUDA array specified by the two-dimensional texture object texObj using texture coordinate (x,y). The level-of-detail is derived from the dx and dy gradients.
B.8.1.8. tex3D()
template<class T> T tex3D(cudaTextureObject_t texObj, float x, float y, float z);
fetches from the CUDA array specified by the three-dimensional texture object texObj using texture coordinate (x,y,z).
B.8.1.9. tex3DLod()
template<class T> T tex3DLod(cudaTextureObject_t texObj, float x, float y, float z, float level);
fetches from the CUDA array or the region of linear memory specified by the three-dimensional texture object texObj using texture coordinate (x,y,z) at level-of-detail level.
B.8.1.10. tex3DGrad()
template<class T> T tex3DGrad(cudaTextureObject_t texObj, float x, float y, float z, float4 dx, float4 dy);
fetches from the CUDA array specified by the three-dimensional texture object texObj using texture coordinate (x,y,z) at a level-of-detail derived from the X and Y gradients dx and dy.
B.8.1.11. tex1DLayered()
template<class T> T tex1DLayered(cudaTextureObject_t texObj, float x, int layer);
fetches from the CUDA array specified by the one-dimensional texture object texObj using texture coordinate x and index layer, as described in Layered Textures
B.8.1.12. tex1DLayeredLod()
template<class T> T tex1DLayeredLod(cudaTextureObject_t texObj, float x, int layer, float level);
fetches from the CUDA array specified by the one-dimensional layered texture at layer layer using texture coordinate x and level-of-detail level.
B.8.1.13. tex1DLayeredGrad()
template<class T> T tex1DLayeredGrad(cudaTextureObject_t texObj, float x, int layer, float dx, float dy);
fetches from the CUDA array specified by the one-dimensional layered texture at layer layer using texture coordinate x and a level-of-detail derived from the dx and dy gradients.
B.8.1.14. tex2DLayered()
template<class T> T tex2DLayered(cudaTextureObject_t texObj, float x, float y, int layer);
fetches from the CUDA array specified by the two-dimensional texture object texObj using texture coordinate (x,y) and index layer, as described in Layered Textures.
B.8.1.15. tex2DLayeredLod()
template<class T> T tex2DLayeredLod(cudaTextureObject_t texObj, float x, float y, int layer, float level);
fetches from the CUDA array specified by the two-dimensional layered texture at layer layer using texture coordinate (x,y).
B.8.1.16. tex2DLayeredGrad()
template<class T> T tex2DLayeredGrad(cudaTextureObject_t texObj, float x, float y, int layer, float2 dx, float2 dy);
fetches from the CUDA array specified by the two-dimensional layered texture at layer layer using texture coordinate (x,y) and a level-of-detail derived from the dx and dy X and Y gradients.
B.8.1.17. texCubemap()
template<class T> T texCubemap(cudaTextureObject_t texObj, float x, float y, float z);
fetches the CUDA array specified by the three-dimensional texture object texObj using texture coordinate (x,y,z), as described in Cubemap Textures.
B.8.1.18. texCubemapLod()
template<class T> T texCubemapLod(cudaTextureObject_t texObj, float x, float, y, float z, float level);
fetches from the CUDA array specified by the three-dimensional texture object texObj using texture coordinate (x,y,z) as described in Cubemap Textures. The level-of-detail used is given by level.
B.8.1.19. texCubemapLayered()
template<class T> T texCubemapLayered(cudaTextureObject_t texObj, float x, float y, float z, int layer);
fetches from the CUDA array specified by the cubemap layered texture object texObj using texture coordinates (x,y,z), and index layer, as described in Cubemap Layered Textures.
B.8.1.20. texCubemapLayeredLod()
template<class T> T texCubemapLayeredLod(cudaTextureObject_t texObj, float x, float y, float z, int layer, float level);
fetches from the CUDA array specified by the cubemap layered texture object texObj using texture coordinate (x,y,z) and index layer, as described in Cubemap Layered Textures, at level-of-detail level level.
B.8.1.21. tex2Dgather()
template<class T> T tex2Dgather(cudaTextureObject_t texObj, float x, float y, int comp = 0);
fetches from the CUDA array specified by the 2D texture object texObj using texture coordinates x and y and the comp parameter as described in Texture Gather.
B.8.2. Texture Reference API
B.8.2.1. tex1Dfetch()
template<class DataType> Type tex1Dfetch( texture<DataType, cudaTextureType1D, cudaReadModeElementType> texRef, int x); float tex1Dfetch( texture<unsigned char, cudaTextureType1D, cudaReadModeNormalizedFloat> texRef, int x); float tex1Dfetch( texture<signed char, cudaTextureType1D, cudaReadModeNormalizedFloat> texRef, int x); float tex1Dfetch( texture<unsigned short, cudaTextureType1D, cudaReadModeNormalizedFloat> texRef, int x); float tex1Dfetch( texture<signed short, cudaTextureType1D, cudaReadModeNormalizedFloat> texRef, int x);
fetches from the region of linear memory bound to the one-dimensional texture reference texRef using integer texture coordinate x. tex1Dfetch() only works with non-normalized coordinates, so only the border and clamp addressing modes are supported. It does not perform any texture filtering. For integer types, it may optionally promote the integer to single-precision floating point.
Besides the functions shown above, 2-, and 4-tuples are supported; for example:
float4 tex1Dfetch( texture<uchar4, cudaTextureType1D, cudaReadModeNormalizedFloat> texRef, int x);
fetches from the region of linear memory bound to texture reference texRef using texture coordinate x.
B.8.2.2. tex1D()
template<class DataType, enum cudaTextureReadMode readMode> Type tex1D(texture<DataType, cudaTextureType1D, readMode> texRef, float x);
fetches from the CUDA array bound to the one-dimensional texture reference texRef using texture coordinate x. Type is equal to DataType except when readMode is equal to cudaReadModeNormalizedFloat (see Texture Reference API), in which case Type is equal to the matching floating-point type.
B.8.2.3. tex1DLod()
template<class DataType, enum cudaTextureReadMode readMode> Type tex1DLod(texture<DataType, cudaTextureType1D, readMode> texRef, float x, float level);
fetches from the CUDA array bound to the one-dimensional texture reference texRef using texture coordinate x. The level-of-detail is given by level. Type is the same as DataType except when readMode is cudaReadModeNormalizedFloat (see Texture Reference API), in which case Type is the corresponding floating-point type.
B.8.2.4. tex1DGrad()
template<class DataType, enum cudaTextureReadMode readMode> Type tex1DGrad(texture<DataType, cudaTextureType1D, readMode> texRef, float x, float dx, float dy);
fetches from the CUDA array bound to the one-dimensional texture reference texRef using texture coordinate x. The level-of-detail is derived from the dx and dy X- and Y-gradients. Type is the same as DataType except when readMode is cudaReadModeNormalizedFloat (see Texture Reference API), in which case Type is the corresponding floating-point type.
B.8.2.5. tex2D()
template<class DataType, enum cudaTextureReadMode readMode> Type tex2D(texture<DataType, cudaTextureType2D, readMode> texRef, float x, float y);
fetches from the CUDA array or the region of linear memory bound to the two-dimensional texture reference texRef using texture coordinates x and y. Type is equal to DataType except when readMode is equal to cudaReadModeNormalizedFloat (see Texture Reference API), in which case Type is equal to the matching floating-point type.
B.8.2.6. tex2DLod()
template<class DataType, enum cudaTextureReadMode readMode> Type tex2DLod(texture<DataType, cudaTextureType2D, readMode> texRef, float x, float y, float level);
fetches from the CUDA array bound to the two-dimensional texture reference texRef using texture coordinate (x,y). The level-of-detail is given by level. Type is the same as DataType except when readMode is cudaReadModeNormalizedFloat (see Texture Reference API), in which case Type is the corresponding floating-point type.
B.8.2.7. tex2DGrad()
template<class DataType, enum cudaTextureReadMode readMode> Type tex2DGrad(texture<DataType, cudaTextureType2D, readMode> texRef, float x, float y, float2 dx, float2 dy);
fetches from the CUDA array bound to the two-dimensional texture reference texRef using texture coordinate (x,y). The level-of-detail is derived from the dx and dy X- and Y-gradients. Type is the same as DataType except when readMode is cudaReadModeNormalizedFloat (see Texture Reference API), in which case Type is the corresponding floating-point type.
B.8.2.8. tex3D()
template<class DataType, enum cudaTextureReadMode readMode> Type tex3D(texture<DataType, cudaTextureType3D, readMode> texRef, float x, float y, float z);
fetches from the CUDA array bound to the three-dimensional texture reference texRef using texture coordinates x, y, and z. Type is equal to DataType except when readMode is equal to cudaReadModeNormalizedFloat (see Texture Reference API), in which case Type is equal to the matching floating-point type.
B.8.2.9. tex3DLod()
template<class DataType, enum cudaTextureReadMode readMode> Type tex3DLod(texture<DataType, cudaTextureType3D, readMode> texRef, float x, float y, float z, float level);
fetches from the CUDA array bound to the two-dimensional texture reference texRef using texture coordinate (x,y,z). The level-of-detail is given by level. Type is the same as DataType except when readMode is cudaReadModeNormalizedFloat (see Texture Reference API), in which case Type is the corresponding floating-point type.
B.8.2.10. tex3DGrad()
template<class DataType, enum cudaTextureReadMode readMode> Type tex3DGrad(texture<DataType, cudaTextureType3D, readMode> texRef, float x, float y, float z, float4 dx, float4 dy);
fetches from the CUDA array bound to the two-dimensional texture reference texRef using texture coordinate (x,y,z). The level-of-detail is derived from the dx and dy X- and Y-gradients. Type is the same as DataType except when readMode is cudaReadModeNormalizedFloat (see Texture Reference API), in which case Type is the corresponding floating-point type.
B.8.2.11. tex1DLayered()
template<class DataType, enum cudaTextureReadMode readMode> Type tex1DLayered( texture<DataType, cudaTextureType1DLayered, readMode> texRef, float x, int layer);
fetches from the CUDA array bound to the one-dimensional layered texture reference texRef using texture coordinate x and index layer, as described in Layered Textures. Type is equal to DataType except when readMode is equal to cudaReadModeNormalizedFloat (see Texture Reference API), in which case Type is equal to the matching floating-point type.
B.8.2.12. tex1DLayeredLod()
template<class DataType, enum cudaTextureReadMode readMode> Type tex1DLayeredLod(texture<DataType, cudaTextureType1D, readMode> texRef, float x, int layer, float level);
fetches from the CUDA array bound to the one-dimensional texture reference texRef using texture coordinate x and index layer as described in Layered Textures. The level-of-detail is given by level. Type is the same as DataType except when readMode is cudaReadModeNormalizedFloat (see Texture Reference API), in which case Type is the corresponding floating-point type.
B.8.2.13. tex1DLayeredGrad()
template<class DataType, enum cudaTextureReadMode readMode> Type tex1DLayeredGrad(texture<DataType, cudaTextureType1D, readMode> texRef, float x, int layer, float dx, float dy);
fetches from the CUDA array bound to the one-dimensional texture reference texRef using texture coordinate x and index layer as described in Layered Textures. The level-of-detail is derived from the dx and dy X- and Y-gradients. Type is the same as DataType except when readMode is cudaReadModeNormalizedFloat (see Texture Reference API), in which case Type is the corresponding floating-point type.
B.8.2.14. tex2DLayered()
template<class DataType, enum cudaTextureReadMode readMode> Type tex2DLayered( texture<DataType, cudaTextureType2DLayered, readMode> texRef, float x, float y, int layer);
fetches from the CUDA array bound to the two-dimensional layered texture reference texRef using texture coordinates x and y, and index layer, as described in Texture Memory. Type is equal to DataType except when readMode is equal to cudaReadModeNormalizedFloat (see Texture Reference API), in which case Type is equal to the matching floating-point type.
B.8.2.15. tex2DLayeredLod()
template<class DataType, enum cudaTextureReadMode readMode> Type tex2DLayeredLod(texture<DataType, cudaTextureType2D, readMode> texRef, float x, float y, int layer, float level);
fetches from the CUDA array bound to the two-dimensional texture reference texRef using texture coordinate (x,y) and index layer as described in Layered Textures. The level-of-detail is given by level. Type is the same as DataType except when readMode is cudaReadModeNormalizedFloat (see Texture Reference API), in which case Type is the corresponding floating-point type.
B.8.2.16. tex2DLayeredGrad()
template<class DataType, enum cudaTextureReadMode readMode> Type tex2DLayeredGrad(texture<DataType, cudaTextureType2D, readMode> texRef, float x, float y, int layer, float2 dx, float2 dy);
fetches from the CUDA array bound to the two-dimensional texture reference texRef using texture coordinate (x,y) and index layer as described in Layered Textures. The level-of-detail is derived from the dx and dy X- and Y-gradients. Type is the same as DataType except when readMode is cudaReadModeNormalizedFloat (see Texture Reference API), in which case Type is the corresponding floating-point type.
B.8.2.17. texCubemap()
template<class DataType, enum cudaTextureReadMode readMode> Type texCubemap( texture<DataType, cudaTextureTypeCubemap, readMode> texRef, float x, float y, float z);
fetches from the CUDA array bound to the cubemap texture reference texRef using texture coordinates x, y, and z, as described in Cubemap Textures. Type is equal to DataType except when readMode is equal to cudaReadModeNormalizedFloat (see Texture Reference API), in which case Type is equal to the matching floating-point type.
B.8.2.18. texCubemapLod()
template<class DataType, enum cudaTextureReadMode readMode> Type texCubemapLod(texture<DataType, cudaTextureType3D, readMode> texRef, float x, float y, float z, float level);
fetches from the CUDA array bound to the two-dimensional texture reference texRef using texture coordinate (x,y,z). The level-of-detail is given by level. Type is the same as DataType except when readMode is cudaReadModeNormalizedFloat (see Texture Reference API), in which case Type is the corresponding floating-point type.
B.8.2.19. texCubemapLayered()
template<class DataType, enum cudaTextureReadMode readMode> Type texCubemapLayered( texture<DataType, cudaTextureTypeCubemapLayered, readMode> texRef, float x, float y, float z, int layer);
fetches from the CUDA array bound to the cubemap layered texture reference texRef using texture coordinates x, y, and z, and index layer, as described in Cubemap Layered Textures. Type is equal to DataType except when readMode is equal to cudaReadModeNormalizedFloat (see Texture Reference API), in which case Type is equal to the matching floating-point type.
B.8.2.20. texCubemapLayeredLod()
template<class DataType, enum cudaTextureReadMode readMode> Type texCubemapLayeredLod(texture<DataType, cudaTextureType3D, readMode> texRef, float x, float y, float z, int layer, float level);
fetches from the CUDA array bound to the two-dimensional texture reference texRef using texture coordinate (x,y,z) and index layer as described in Layered Textures. The level-of-detail is given by level. Type is the same as DataType except when readMode is cudaReadModeNormalizedFloat (see Texture Reference API), in which case Type is the corresponding floating-point type.
B.8.2.21. tex2Dgather()
template<class DataType, enum cudaTextureReadMode readMode> Type tex2Dgather( texture<DataType, cudaTextureType2D, readMode> texRef, float x, float y, int comp = 0);
fetches from the CUDA array bound to the 2D texture reference texRef using texture coordinates x and y and the comp parameter as described in Texture Gather. Type is a 4-component vector type. It is based on the base type of DataType except when readMode is equal to cudaReadModeNormalizedFloat (see Texture Reference API), in which case it is always float4.
B.9. Surface Functions
Surface functions are only supported by devices of compute capability 2.0 and higher.
Surface objects are described in described in Surface Object API
Surface references are described in Surface Reference API.
In the sections below, boundaryMode specifies the boundary mode, that is how out-of-range surface coordinates are handled; it is equal to either cudaBoundaryModeClamp, in which case out-of-range coordinates are clamped to the valid range, or cudaBoundaryModeZero, in which case out-of-range reads return zero and out-of-range writes are ignored, or cudaBoundaryModeTrap, in which case out-of-range accesses cause the kernel execution to fail.
B.9.1. Surface Object API
B.9.1.1. surf1Dread()
template<class T>
T surf1Dread(cudaSurfaceObject_t surfObj, int x,
boundaryMode = cudaBoundaryModeTrap);
reads the CUDA array specified by the one-dimensional surface object
surfObj using coordinate x.
B.9.1.2. surf1Dwrite
template<class T> void surf1Dwrite(T data, cudaSurfaceObject_t surfObj, int x, boundaryMode = cudaBoundaryModeTrap);writes value data to the CUDA array specified by the one-dimensional surface object surfObj at coordinate x.
B.9.1.3. surf2Dread()
template<class T> T surf2Dread(cudaSurfaceObject_t surfObj, int x, int y, boundaryMode = cudaBoundaryModeTrap); template<class T> void surf2Dread(T* data, cudaSurfaceObject_t surfObj, int x, int y, boundaryMode = cudaBoundaryModeTrap);reads the CUDA array specified by the two-dimensional surface object surfObj using coordinates x and y.
B.9.1.4. surf2Dwrite()
template<class T> void surf2Dwrite(T data, cudaSurfaceObject_t surfObj, int x, int y, boundaryMode = cudaBoundaryModeTrap);writes value data to the CUDA array specified by the two-dimensional surface object surfObj at coordinate x and y.
B.9.1.5. surf3Dread()
template<class T> T surf3Dread(cudaSurfaceObject_t surfObj, int x, int y, int z, boundaryMode = cudaBoundaryModeTrap); template<class T> void surf3Dread(T* data, cudaSurfaceObject_t surfObj, int x, int y, int z, boundaryMode = cudaBoundaryModeTrap);reads the CUDA array specified by the three-dimensional surface object surfObj using coordinates x, y, and z.
B.9.1.6. surf3Dwrite()
template<class T> void surf3Dwrite(T data, cudaSurfaceObject_t surfObj, int x, int y, int z, boundaryMode = cudaBoundaryModeTrap);writes value data to the CUDA array specified by the three-dimensional object surfObj at coordinate x, y, and z.
B.9.1.7. surf1DLayeredread()
template<class T> T surf1DLayeredread( cudaSurfaceObject_t surfObj, int x, int layer, boundaryMode = cudaBoundaryModeTrap); template<class T> void surf1DLayeredread(T data, cudaSurfaceObject_t surfObj, int x, int layer, boundaryMode = cudaBoundaryModeTrap);reads the CUDA array specified by the one-dimensional layered surface object surfObj using coordinate x and index layer.
B.9.1.8. surf1DLayeredwrite()
template<class Type> void surf1DLayeredwrite(T data, cudaSurfaceObject_t surfObj, int x, int layer, boundaryMode = cudaBoundaryModeTrap);writes value data to the CUDA array specified by the two-dimensional layered surface object surfObj at coordinate x and index layer.
B.9.1.9. surf2DLayeredread()
template<class T> T surf2DLayeredread( cudaSurfaceObject_t surfObj, int x, int y, int layer, boundaryMode = cudaBoundaryModeTrap); template<class T> void surf2DLayeredread(T data, cudaSurfaceObject_t surfObj, int x, int y, int layer, boundaryMode = cudaBoundaryModeTrap);reads the CUDA array specified by the two-dimensional layered surface object surfObj using coordinate x and y, and index layer.
B.9.1.10. surf2DLayeredwrite()
template<class T> void surf2DLayeredwrite(T data, cudaSurfaceObject_t surfObj, int x, int y, int layer, boundaryMode = cudaBoundaryModeTrap);writes value data to the CUDA array specified by the one-dimensional layered surface object surfObj at coordinate x and y, and index layer.
B.9.1.11. surfCubemapread()
template<class T> T surfCubemapread( cudaSurfaceObject_t surfObj, int x, int y, int face, boundaryMode = cudaBoundaryModeTrap); template<class T> void surfCubemapread(T data, cudaSurfaceObject_t surfObj, int x, int y, int face, boundaryMode = cudaBoundaryModeTrap);reads the CUDA array specified by the cubemap surface object surfObj using coordinate x and y, and face index face.
B.9.1.12. surfCubemapwrite()
template<class T> void surfCubemapwrite(T data, cudaSurfaceObject_t surfObj, int x, int y, int face, boundaryMode = cudaBoundaryModeTrap);writes value data to the CUDA array specified by the cubemap object surfObj at coordinate x and y, and face index face.
B.9.1.13. surfCubemapLayeredread()
template<class T> T surfCubemapLayeredread( cudaSurfaceObject_t surfObj, int x, int y, int layerFace, boundaryMode = cudaBoundaryModeTrap); template<class T> void surfCubemapLayeredread(T data, cudaSurfaceObject_t surfObj, int x, int y, int layerFace, boundaryMode = cudaBoundaryModeTrap);reads the CUDA array specified by the cubemap layered surface object surfObj using coordinate x and y, and index layerFace.
B.9.1.14. surfCubemapLayeredwrite()
template<class T> void surfCubemapLayeredwrite(T data, cudaSurfaceObject_t surfObj, int x, int y, int layerFace, boundaryMode = cudaBoundaryModeTrap);writes value data to the CUDA array specified by the cubemap layered object surfObj at coordinate x and y, and index layerFace.
B.9.2. Surface Reference API
B.9.2.1. surf1Dread()
template<class Type> Type surf1Dread(surface<void, cudaSurfaceType1D> surfRef, int x, boundaryMode = cudaBoundaryModeTrap); template<class Type> void surf1Dread(Type data, surface<void, cudaSurfaceType1D> surfRef, int x, boundaryMode = cudaBoundaryModeTrap);reads the CUDA array bound to the one-dimensional surface reference surfRef using coordinate x.
B.9.2.2. surf1Dwrite
template<class Type> void surf1Dwrite(Type data, surface<void, cudaSurfaceType1D> surfRef, int x, boundaryMode = cudaBoundaryModeTrap);writes value data to the CUDA array bound to the one-dimensional surface reference surfRef at coordinate x.
B.9.2.3. surf2Dread()
template<class Type> Type surf2Dread(surface<void, cudaSurfaceType2D> surfRef, int x, int y, boundaryMode = cudaBoundaryModeTrap); template<class Type> void surf2Dread(Type* data, surface<void, cudaSurfaceType2D> surfRef, int x, int y, boundaryMode = cudaBoundaryModeTrap);reads the CUDA array bound to the two-dimensional surface reference surfRef using coordinates x and y.
B.9.2.4. surf2Dwrite()
template<class Type> void surf3Dwrite(Type data, surface<void, cudaSurfaceType3D> surfRef, int x, int y, int z, boundaryMode = cudaBoundaryModeTrap);writes value data to the CUDA array bound to the two-dimensional surface reference surfRef at coordinate x and y.
B.9.2.5. surf3Dread()
template<class Type> Type surf3Dread(surface<void, cudaSurfaceType3D> surfRef, int x, int y, int z, boundaryMode = cudaBoundaryModeTrap); template<class Type> void surf3Dread(Type* data, surface<void, cudaSurfaceType3D> surfRef, int x, int y, int z, boundaryMode = cudaBoundaryModeTrap);reads the CUDA array bound to the three-dimensional surface reference surfRef using coordinates x, y, and z.
B.9.2.6. surf3Dwrite()
template<class Type> void surf3Dwrite(Type data, surface<void, cudaSurfaceType3D> surfRef, int x, int y, int z, boundaryMode = cudaBoundaryModeTrap);writes value data to the CUDA array bound to the three-dimensional surface reference surfRef at coordinate x, y, and z.
B.9.2.7. surf1DLayeredread()
template<class Type> Type surf1DLayeredread( surface<void, cudaSurfaceType1DLayered> surfRef, int x, int layer, boundaryMode = cudaBoundaryModeTrap); template<class Type> void surf1DLayeredread(Type data, surface<void, cudaSurfaceType1DLayered> surfRef, int x, int layer, boundaryMode = cudaBoundaryModeTrap);reads the CUDA array bound to the one-dimensional layered surface reference surfRef using coordinate x and index layer.
B.9.2.8. surf1DLayeredwrite()
template<class Type> void surf1DLayeredwrite(Type data, surface<void, cudaSurfaceType1DLayered> surfRef, int x, int layer, boundaryMode = cudaBoundaryModeTrap);writes value data to the CUDA array bound to the two-dimensional layered surface reference surfRef at coordinate x and index layer.
B.9.2.9. surf2DLayeredread()
template<class Type> Type surf2DLayeredread( surface<void, cudaSurfaceType2DLayered> surfRef, int x, int y, int layer, boundaryMode = cudaBoundaryModeTrap); template<class Type> void surf2DLayeredread(Type data, surface<void, cudaSurfaceType2DLayered> surfRef, int x, int y, int layer, boundaryMode = cudaBoundaryModeTrap);reads the CUDA array bound to the two-dimensional layered surface reference surfRef using coordinate x and y, and index layer.
B.9.2.10. surf2DLayeredwrite()
template<class Type> void surf2DLayeredwrite(Type data, surface<void, cudaSurfaceType2DLayered> surfRef, int x, int y, int layer, boundaryMode = cudaBoundaryModeTrap);writes value data to the CUDA array bound to the one-dimensional layered surface reference surfRef at coordinate x and y, and index layer.
B.9.2.11. surfCubemapread()
template<class Type> Type surfCubemapread( surface<void, cudaSurfaceTypeCubemap> surfRef, int x, int y, int face, boundaryMode = cudaBoundaryModeTrap); template<class Type> void surfCubemapread(Type data, surface<void, cudaSurfaceTypeCubemap> surfRef, int x, int y, int face, boundaryMode = cudaBoundaryModeTrap);reads the CUDA array bound to the cubemap surface reference surfRef using coordinate x and y, and face index face.
B.9.2.12. surfCubemapwrite()
template<class Type> void surfCubemapwrite(Type data, surface<void, cudaSurfaceTypeCubemap> surfRef, int x, int y, int face, boundaryMode = cudaBoundaryModeTrap);writes value data to the CUDA array bound to the cubemap reference surfRef at coordinate x and y, and face index face.
B.9.2.13. surfCubemapLayeredread()
template<class Type> Type surfCubemapLayeredread( surface<void, cudaSurfaceTypeCubemapLayered> surfRef, int x, int y, int layerFace, boundaryMode = cudaBoundaryModeTrap); template<class Type> void surfCubemapLayeredread(Type data, surface<void, cudaSurfaceTypeCubemapLayered> surfRef, int x, int y, int layerFace, boundaryMode = cudaBoundaryModeTrap);reads the CUDA array bound to the cubemap layered surface reference surfRef using coordinate x and y, and index layerFace.
B.9.2.14. surfCubemapLayeredwrite()
template<class Type> void surfCubemapLayeredwrite(Type data, surface<void, cudaSurfaceTypeCubemapLayered> surfRef, int x, int y, int layerFace, boundaryMode = cudaBoundaryModeTrap);writes value data to the CUDA array bound to the cubemap layered reference surfRef at coordinate x and y, and index layerFace.
B.10. Read-Only Data Cache Load Function
The read-only data cache load function is only supported by devices of compute capability 3.5 and higher.
T __ldg(const T* address);
returns the data of type
T located at address
address, where
T is
char,
short,
int,
long long
unsigned char,
unsigned short,
unsigned int,
unsigned long long,
int2,
int4,
uint2,
uint4,
float,
float2,
float4,
double, or
double2. The operation is cached in the read-only data cache (see
Global Memory).
B.11. Time Function
clock_t clock(); long long int clock64();when executed in device code, returns the value of a per-multiprocessor counter that is incremented every clock cycle. Sampling this counter at the beginning and at the end of a kernel, taking the difference of the two samples, and recording the result per thread provides a measure for each thread of the number of clock cycles taken by the device to completely execute the thread, but not of the number of clock cycles the device actually spent executing thread instructions. The former number is greater than the latter since threads are time sliced.
B.12. Atomic Functions
An atomic function performs a read-modify-write atomic operation on one 32-bit or 64-bit word residing in global or shared memory. For example, atomicAdd() reads a word at some address in global or shared memory, adds a number to it, and writes the result back to the same address. The operation is atomic in the sense that it is guaranteed to be performed without interference from other threads. In other words, no other thread can access this address until the operation is complete. Atomic functions do not act as memory fences and do not imply synchronization or ordering constraints for memory operations (see Memory Fence Functions for more details on memory fences). Atomic functions can only be used in device functions and atomic functions operating on mapped page-locked memory (Mapped Memory) are not atomic from the point of view of the host or other devices.
Note that any atomic operation can be implemented based on atomicCAS() (Compare And Swap). For example, atomicAdd() for double-precision floating-point numbers can be implemented as follows:
__device__ double atomicAdd(double* address, double val) { unsigned long long int* address_as_ull = (unsigned long long int*)address; unsigned long long int old = *address_as_ull, assumed; do { assumed = old; old = atomicCAS(address_as_ull, assumed, __double_as_longlong(val + __longlong_as_double(assumed))); // Note: uses integer comparison to avoid hang in case of NaN (since NaN != NaN) } while (assumed != old); return __longlong_as_double(old); }
B.12.1. Arithmetic Functions
B.12.1.1. atomicAdd()
int atomicAdd(int* address, int val); unsigned int atomicAdd(unsigned int* address, unsigned int val); unsigned long long int atomicAdd(unsigned long long int* address, unsigned long long int val); float atomicAdd(float* address, float val);
reads the 32-bit or 64-bit word old located at the address address in global or shared memory, computes (old + val), and stores the result back to memory at the same address. These three operations are performed in one atomic transaction. The function returns old.
The floating-point version of atomicAdd() is only supported by devices of compute capability 2.x and higher.
B.12.1.2. atomicSub()
int atomicSub(int* address, int val); unsigned int atomicSub(unsigned int* address, unsigned int val);reads the 32-bit word old located at the address address in global or shared memory, computes (old - val), and stores the result back to memory at the same address. These three operations are performed in one atomic transaction. The function returns old.
B.12.1.3. atomicExch()
int atomicExch(int* address, int val); unsigned int atomicExch(unsigned int* address, unsigned int val); unsigned long long int atomicExch(unsigned long long int* address, unsigned long long int val); float atomicExch(float* address, float val);
reads the 32-bit or 64-bit word old located at the address address in global or shared memory and stores val back to memory at the same address. These two operations are performed in one atomic transaction. The function returns old.
B.12.1.4. atomicMin()
int atomicMin(int* address, int val); unsigned int atomicMin(unsigned int* address, unsigned int val); unsigned long long int atomicMin(unsigned long long int* address, unsigned long long int val);
reads the 32-bit or 64-bit word old located at the address address in global or shared memory, computes the minimum of old and val, and stores the result back to memory at the same address. These three operations are performed in one atomic transaction. The function returns old.
The 64-bit version of atomicMin() is only supported by devices of compute capability 3.5 and higher.
B.12.1.5. atomicMax()
int atomicMax(int* address, int val); unsigned int atomicMax(unsigned int* address, unsigned int val); unsigned long long int atomicMax(unsigned long long int* address, unsigned long long int val);
reads the 32-bit or 64-bit word old located at the address address in global or shared memory, computes the maximum of old and val, and stores the result back to memory at the same address. These three operations are performed in one atomic transaction. The function returns old.
The 64-bit version of atomicMax() is only supported by devices of compute capability 3.5 and higher.
B.12.1.6. atomicInc()
unsigned int atomicInc(unsigned int* address, unsigned int val);
reads the 32-bit word old located at the address address in global or shared memory, computes ((old >= val) ? 0 : (old+1)), and stores the result back to memory at the same address. These three operations are performed in one atomic transaction. The function returns old.
B.12.1.7. atomicDec()
unsigned int atomicDec(unsigned int* address, unsigned int val);
reads the 32-bit word old located at the address address in global or shared memory, computes (((old == 0) | (old > val)) ? val : (old-1) ), and stores the result back to memory at the same address. These three operations are performed in one atomic transaction. The function returns old.
B.12.1.8. atomicCAS()
int atomicCAS(int* address, int compare, int val); unsigned int atomicCAS(unsigned int* address, unsigned int compare, unsigned int val); unsigned long long int atomicCAS(unsigned long long int* address, unsigned long long int compare, unsigned long long int val);
reads the 32-bit or 64-bit word old located at the address address in global or shared memory, computes (old == compare ? val : old) , and stores the result back to memory at the same address. These three operations are performed in one atomic transaction. The function returns old (Compare And Swap).
B.12.2. Bitwise Functions
B.12.2.1. atomicAnd()
int atomicAnd(int* address, int val); unsigned int atomicAnd(unsigned int* address, unsigned int val); unsigned long long int atomicAnd(unsigned long long int* address, unsigned long long int val);
reads the 32-bit or 64-bit word old located at the address address in global or shared memory, computes (old & val), and stores the result back to memory at the same address. These three operations are performed in one atomic transaction. The function returns old.
The 64-bit version of atomicAnd() is only supported by devices of compute capability 3.5 and higher.
B.12.2.2. atomicOr()
int atomicOr(int* address, int val); unsigned int atomicOr(unsigned int* address, unsigned int val); unsigned long long int atomicOr(unsigned long long int* address, unsigned long long int val);
reads the 32-bit or 64-bit word old located at the address address in global or shared memory, computes (old | val), and stores the result back to memory at the same address. These three operations are performed in one atomic transaction. The function returns old.
The 64-bit version of atomicOr() is only supported by devices of compute capability 3.5 and higher.
B.12.2.3. atomicXor()
int atomicXor(int* address, int val); unsigned int atomicXor(unsigned int* address, unsigned int val); unsigned long long int atomicXor(unsigned long long int* address, unsigned long long int val);
reads the 32-bit or 64-bit word old located at the address address in global or shared memory, computes (old ^ val), and stores the result back to memory at the same address. These three operations are performed in one atomic transaction. The function returns old.
The 64-bit version of atomicXor() is only supported by devices of compute capability 3.5 and higher.
B.13. Warp Vote Functions
int __all(int predicate); int __any(int predicate); unsigned int __ballot(int predicate);
The warp vote functions allow the threads of a given warp to perform a reduction-and-broadcast operation. These functions take as input an integer predicate from each thread in the warp and compare those values with zero. The results of the comparisons are combined (reduced) across the active threads of the warp in one of the following ways, broadcasting a single return value to each participating thread:
-
__all(predicate):
- Evaluate predicate for all active threads of the warp and return non-zero if and only if predicate evaluates to non-zero for all of them. __any(predicate):
- Evaluate predicate for all active threads of the warp and return non-zero if and only if predicate evaluates to non-zero for any of them. __ballot(predicate):
- Evaluate predicate for all active threads of the warp and return an integer whose Nth bit is set if and only if predicate evaluates to non-zero for the Nth thread of the warp and the Nth thread is active.
Notes
For each of these warp vote operations, the result excludes threads that are inactive (e.g., due to warp divergence). Inactive threads are represented by 0 bits in the value returned by __ballot() and are not considered in the reductions performed by __all() and __any().
B.14. Warp Shuffle Functions
__shfl, __shfl_up, __shfl_down, __shfl_xor exchange a variable between threads within a warp.
Supported by devices of compute capability 3.x.
B.14.1. Synopsis
int __shfl(int var, int srcLane, int width=warpSize); int __shfl_up(int var, unsigned int delta, int width=warpSize); int __shfl_down(int var, unsigned int delta, int width=warpSize); int __shfl_xor(int var, int laneMask, int width=warpSize); float __shfl(float var, int srcLane, int width=warpSize); float __shfl_up(float var, unsigned int delta, int width=warpSize); float __shfl_down(float var, unsigned int delta, int width=warpSize); float __shfl_xor(float var, int laneMask, int width=warpSize); half __shfl(half var, int srcLane, int width=warpSize); half __shfl_up(half var, unsigned int delta, int width=warpSize); half __shfl_down(half var, unsigned int delta, int width=warpSize); half __shfl_xor(half var, int laneMask, int width=warpSize);
B.14.2. Description
The __shfl() intrinsics permit exchanging of a variable between threads within a warp without use of shared memory. The exchange occurs simultaneously for all active threads within the warp, moving 4 bytes of data per thread. Exchange of 8-byte quantities must be broken into two separate invocations of __shfl().
Threads within a warp are referred to as lanes, and for devices of compute capability 3.x may have an index between 0 and warpSize-1 (inclusive). Four source-lane addressing modes are supported:
-
__shfl()
- Direct copy from indexed lane __shfl_up()
- Copy from a lane with lower ID relative to caller __shfl_down()
- Copy from a lane with higher ID relative to caller __shfl_xor()
- Copy from a lane based on bitwise XOR of own lane ID
Threads may only read data from another thread which is actively participating in the __shfl() command. If the target thread is inactive, the retrieved value is undefined.
All of the __shfl() intrinsics take an optional width parameter which alters the behavior of the intrinsic. width must have a value which is a power of 2; results are undefined if width is not a power of 2, or is a number greater than warpSize.
__shfl() returns the value of var held by the thread whose ID is given by srcLane. If width is less than warpSize then each subsection of the warp behaves as a separate entity with a starting logical lane ID of 0. If srcLane is outside the range [0:width-1], the value returned corresponds to the value of var held by the srcLane modulo width (i.e. within the same subsection).
__shfl_up() calculates a source lane ID by subtracting delta from the caller's lane ID. The value of var held by the resulting lane ID is returned: in effect, var is shifted up the warp by delta lanes. If width is less than warpSize then each subsection of the warp behaves as a separate entity with a starting logical lane ID of 0. The source lane index will not wrap around the value of width, so effectively the lower delta lanes will be unchanged.
__shfl_down() calculates a source lane ID by adding delta to the caller's lane ID. The value of var held by the resulting lane ID is returned: this has the effect of shifting var down the warp by delta lanes. If width is less than warpSize then each subsection of the warp behaves as a separate entity with a starting logical lane ID of 0. As for __shfl_up(), the ID number of the source lane will not wrap around the value of width and so the upper delta lanes will remain unchanged.
__shfl_xor() calculates a source line ID by performing a bitwise XOR of the caller's lane ID with laneMask: the value of var held by the resulting lane ID is returned. If width is less than warpSize then each group of width consecutive threads are able to access elements from earlier groups of threads, however if they attempt to access elements from later groups of threads their own value of var will be returned. This mode implements a butterfly addressing pattern such as is used in tree reduction and broadcast.
B.14.3. Return Value
All __shfl() intrinsics return the 4-byte word referenced by var from the source lane ID as an unsigned integer. If the source lane ID is out of range or the source thread has exited, the calling thread's own var is returned.
B.14.4. Notes
All __shfl() intrinsics share the same semantics with respect to code motion as the vote intrinsics __any() and __all().
Threads may only read data from another thread which is actively participating in the __shfl() command. If the target thread is inactive, the retrieved value is undefined.
width must be a power-of-2 (i.e., 2, 4, 8, 16 or 32). Results are unspecified for other values.
Types other than int or float must first be cast in order to use the __shfl() intrinsics.
B.14.5. Examples
B.14.5.1. Broadcast of a single value across a warp
#include <stdio.h> __global__ void bcast(int arg) { int laneId = threadIdx.x & 0x1f; int value; if (laneId == 0) // Note unused variable for value = arg; // all threads except lane 0 value = __shfl(value, 0); // Get "value" from lane 0 if (value != arg) printf("Thread %d failed.\n", threadIdx.x); } int main() { bcast<<< 1, 32 >>>(1234); cudaDeviceSynchronize(); return 0; }
B.14.5.2. Inclusive plus-scan across sub-partitions of 8 threads
#include <stdio.h> __global__ void scan4() { int laneId = threadIdx.x & 0x1f; // Seed sample starting value (inverse of lane ID) int value = 31 - laneId; // Loop to accumulate scan within my partition. // Scan requires log2(n) == 3 steps for 8 threads // It works by an accumulated sum up the warp // by 1, 2, 4, 8 etc. steps. for (int i=1; i<=4; i*=2) { // Note: shfl requires all threads being // accessed to be active. Therefore we do // the __shfl unconditionally so that we // can read even from threads which won't do a // sum, and then conditionally assign the result. int n = __shfl_up(value, i, 8); if (laneId >= i) value += n; } printf("Thread %d final value = %d\n", threadIdx.x, value); } int main() { scan4<<< 1, 32 >>>(); cudaDeviceSynchronize(); return 0; }
B.14.5.3. Reduction across a warp
#include <stdio.h> __global__ void warpReduce() { int laneId = threadIdx.x & 0x1f; // Seed starting value as inverse lane ID int value = 31 - laneId; // Use XOR mode to perform butterfly reduction for (int i=16; i>=1; i/=2) value += __shfl_xor(value, i, 32); // "value" now contains the sum across all threads printf("Thread %d final value = %d\n", threadIdx.x, value); } int main() { warpReduce<<< 1, 32 >>>(); cudaDeviceSynchronize(); return 0; }
B.15. Profiler Counter Function
Each multiprocessor has a set of sixteen hardware counters that an application can increment with a single instruction by calling the __prof_trigger() function.
[void __prof_trigger(int counter);
increments by one per warp the per-multiprocessor hardware counter of index counter. Counters 8 to 15 are reserved and should not be used by applications.
The value of counters 0, 1, ..., 7 can be obtained via nvprof by nvprof --events prof_trigger_0x where x is 0, 1, ..., 7. The value of those counters for the first multiprocessor can also be obtained via the old CUDA command-line profiler by listing prof_trigger_00, prof_trigger_01, ..., prof_trigger_07 , etc. in the profiler.conf file (see the profiler manual for more details). All counters are reset before each kernel launch (note that when collecting counters, kernel launches are synchronous as mentioned in Concurrent Execution between Host and Device).
B.16. Assertion
Assertion is only supported by devices of compute capability 2.x and higher. It is not supported on MacOS, regardless of the device, and loading a module that references the assert function on Mac OS will fail.
void assert(int expression);
stops the kernel execution if expression is equal to zero. If the program is run within a debugger, this triggers a breakpoint and the debugger can be used to inspect the current state of the device. Otherwise, each thread for which expression is equal to zero prints a message to stderr after synchronization with the host via cudaDeviceSynchronize(), cudaStreamSynchronize(), or cudaEventSynchronize(). The format of this message is as follows:
<filename>:<line number>:<function>: block: [blockId.x,blockId.x,blockIdx.z], thread: [threadIdx.x,threadIdx.y,threadIdx.z] Assertion `<expression>` failed.
Any subsequent host-side synchronization calls made for the same device will return cudaErrorAssert. No more commands can be sent to this device until cudaDeviceReset() is called to reinitialize the device.
If expression is different from zero, the kernel execution is unaffected.
For example, the following program from source file test.cu
#include <assert.h> __global__ void testAssert(void) { int is_one = 1; int should_be_one = 0; // This will have no effect assert(is_one); // This will halt kernel execution assert(should_be_one); } int main(int argc, char* argv[]) { testAssert<<<1,1>>>(); cudaDeviceSynchronize(); return 0; }
will output:
test.cu:19: void testAssert(): block: [0,0,0], thread: [0,0,0] Assertion `should_be_one` failed.
Assertions are for debugging purposes. They can affect performance and it is therefore recommended to disable them in production code. They can be disabled at compile time by defining the NDEBUG preprocessor macro before including assert.h. Note that expression should not be an expression with side effects (something like (++i > 0), for example), otherwise disabling the assertion will affect the functionality of the code.
B.17. Formatted Output
Formatted output is only supported by devices of compute capability 2.x and higher.
int printf(const char *format[, arg, ...]);
prints formatted output from a kernel to a host-side output stream.
The in-kernel printf() function behaves in a similar way to the standard C-library printf() function, and the user is referred to the host system's manual pages for a complete description of printf() behavior. In essence, the string passed in as format is output to a stream on the host, with substitutions made from the argument list wherever a format specifier is encountered. Supported format specifiers are listed below.
The printf() command is executed as any other device-side function: per-thread, and in the context of the calling thread. From a multi-threaded kernel, this means that a straightforward call to printf() will be executed by every thread, using that thread's data as specified. Multiple versions of the output string will then appear at the host stream, once for each thread which encountered the printf().
It is up to the programmer to limit the output to a single thread if only a single output string is desired (see Examples for an illustrative example).
Unlike the C-standard printf(), which returns the number of characters printed, CUDA's printf() returns the number of arguments parsed. If no arguments follow the format string, 0 is returned. If the format string is NULL, -1 is returned. If an internal error occurs, -2 is returned.
B.17.1. Format Specifiers
As for standard printf(), format specifiers take the form: %[flags][width][.precision][size]type
The following fields are supported (see widely-available documentation for a complete description of all behaviors):
- Flags: `#' ` ' `0' `+' `-'
- Width: `*' `0-9'
- Precision: `0-9'
- Size: `h' `l' `ll'
- Type: `%cdiouxXpeEfgGaAs'
Note that CUDA's printf()will accept any combination of flag, width, precision, size and type, whether or not overall they form a valid format specifier. In other words, "%hd" will be accepted and printf will expect a double-precision variable in the corresponding location in the argument list.
B.17.2. Limitations
Final formatting of the printf() output takes place on the host system. This means that the format string must be understood by the host-system's compiler and C library. Every effort has been made to ensure that the format specifiers supported by CUDA's printf function form a universal subset from the most common host compilers, but exact behavior will be host-OS-dependent.
As described in Format Specifiers, printf() will accept all combinations of valid flags and types. This is because it cannot determine what will and will not be valid on the host system where the final output is formatted. The effect of this is that output may be undefined if the program emits a format string which contains invalid combinations.
The printf() command can accept at most 32 arguments in addition to the format string. Additional arguments beyond this will be ignored, and the format specifier output as-is.
Owing to the differing size of the long type on 64-bit Windows platforms (four bytes on 64-bit Windows platforms, eight bytes on other 64-bit platforms), a kernel which is compiled on a non-Windows 64-bit machine but then run on a win64 machine will see corrupted output for all format strings which include "%ld". It is recommended that the compilation platform matches the execution platform to ensure safety.
The output buffer for printf() is set to a fixed size before kernel launch (see Associated Host-Side API). It is circular and if more output is produced during kernel execution than can fit in the buffer, older output is overwritten. It is flushed only when one of these actions is performed:
- Kernel launch via <<<>>> or cuLaunchKernel() (at the start of the launch, and if the CUDA_LAUNCH_BLOCKING environment variable is set to 1, at the end of the launch as well),
- Synchronization via cudaDeviceSynchronize(), cuCtxSynchronize(), cudaStreamSynchronize(), cuStreamSynchronize(), cudaEventSynchronize(), or cuEventSynchronize(),
- Memory copies via any blocking version of cudaMemcpy*() or cuMemcpy*(),
- Module loading/unloading via cuModuleLoad() or cuModuleUnload(),
- Context destruction via cudaDeviceReset() or cuCtxDestroy().
- Prior to executing a stream callback added by cudaStreamAddCallback or cuStreamAddCallback.
Note that the buffer is not flushed automatically when the program exits. The user must call cudaDeviceReset() or cuCtxDestroy() explicitly, as shown in the examples below.
Internally printf() uses a shared data structure and so it is possible that calling printf() might change the order of execution of threads. In particular, a thread which calls printf() might take a longer execution path than one which does not call printf(), and that path length is dependent upon the parameters of the printf(). Note, however, that CUDA makes no guarantees of thread execution order except at explicit __syncthreads() barriers, so it is impossible to tell whether execution order has been modified by printf() or by other scheduling behaviour in the hardware.
B.17.3. Associated Host-Side API
The following API functions get and set the size of the buffer used to transfer the printf() arguments and internal metadata to the host (default is 1 megabyte):
- cudaDeviceGetLimit(size_t* size,cudaLimitPrintfFifoSize)
- cudaDeviceSetLimit(cudaLimitPrintfFifoSize, size_t size)
B.17.4. Examples
#include <stdio.h> __global__ void helloCUDA(float f) { printf("Hello thread %d, f=%f\n", threadIdx.x, f); } int main() { helloCUDA<<<1, 5>>>(1.2345f); cudaDeviceSynchronize(); return 0; }
will output:
Hello thread 2, f=1.2345 Hello thread 1, f=1.2345 Hello thread 4, f=1.2345 Hello thread 0, f=1.2345 Hello thread 3, f=1.2345
Notice how each thread encounters the printf() command, so there are as many lines of output as there were threads launched in the grid. As expected, global values (i.e., float f) are common between all threads, and local values (i.e., threadIdx.x) are distinct per-thread.
#include <stdio.h> __global__ void helloCUDA(float f) { if (threadIdx.x == 0) printf("Hello thread %d, f=%f\n", threadIdx.x, f) ; } int main() { helloCUDA<<<1, 5>>>(1.2345f); cudaDeviceSynchronize(); return 0; }
will output:
Hello thread 0, f=1.2345
Self-evidently, the if() statement limits which threads will call printf, so that only a single line of output is seen.
B.18. Dynamic Global Memory Allocation and Operations
Dynamic global memory allocation and operations are only supported by devices of compute capability 2.x and higher.
void* malloc(size_t size); void free(void* ptr);
allocate and free memory dynamically from a fixed-size heap in global memory.
void* memcpy(void* dest, const void* src, size_t size);
copy size bytes from the memory location pointed by src to the memory location pointed by dest.
void* memset(void* ptr, int value, size_t size);
set size bytes of memory block pointed by ptr to value (interpreted as an unsigned char).
The CUDA in-kernel malloc() function allocates at least size bytes from the device heap and returns a pointer to the allocated memory or NULL if insufficient memory exists to fulfill the request. The returned pointer is guaranteed to be aligned to a 16-byte boundary.
The CUDA in-kernel free() function deallocates the memory pointed to by ptr, which must have been returned by a previous call to malloc(). If ptr is NULL, the call to free() is ignored. Repeated calls to free() with the same ptr has undefined behavior.
The memory allocated by a given CUDA thread via malloc() remains allocated for the lifetime of the CUDA context, or until it is explicitly released by a call to free(). It can be used by any other CUDA threads even from subsequent kernel launches. Any CUDA thread may free memory allocated by another thread, but care should be taken to ensure that the same pointer is not freed more than once.
B.18.1. Heap Memory Allocation
The device memory heap has a fixed size that must be specified before any program using malloc() or free() is loaded into the context. A default heap of eight megabytes is allocated if any program uses malloc() without explicitly specifying the heap size.
The following API functions get and set the heap size:
- cudaDeviceGetLimit(size_t* size, cudaLimitMallocHeapSize)
- cudaDeviceSetLimit(cudaLimitMallocHeapSize, size_t size)
The heap size granted will be at least size bytes. cuCtxGetLimit()and cudaDeviceGetLimit() return the currently requested heap size.
The actual memory allocation for the heap occurs when a module is loaded into the context, either explicitly via the CUDA driver API (see Module), or implicitly via the CUDA runtime API (see CUDA C Runtime). If the memory allocation fails, the module load will generate a CUDA_ERROR_SHARED_OBJECT_INIT_FAILED error.
Heap size cannot be changed once a module load has occurred and it does not resize dynamically according to need.
Memory reserved for the device heap is in addition to memory allocated through host-side CUDA API calls such as cudaMalloc().
B.18.2. Interoperability with Host Memory API
Memory allocated via malloc() cannot be freed using the runtime (i.e., by calling any of the free memory functions from Device Memory).
Similarly, memory allocated via the runtime (i.e., by calling any of the memory allocation functions from Device Memory) cannot be freed via free().
B.18.3. Examples
B.18.3.1. Per Thread Allocation
The following code sample:
#include <stdlib.h> #include <stdio.h> __global__ void mallocTest() { size_t size = 123; char* ptr = (char*)malloc(size); memset(ptr, 0, size); printf("Thread %d got pointer: %p\n", threadIdx.x, ptr); free(ptr); } int main() { // Set a heap size of 128 megabytes. Note that this must // be done before any kernel is launched. cudaDeviceSetLimit(cudaLimitMallocHeapSize, 128*1024*1024); mallocTest<<<1, 5>>>(); cudaDeviceSynchronize(); return 0; }
will output:
Thread 0 got pointer: 00057020 Thread 1 got pointer: 0005708c Thread 2 got pointer: 000570f8 Thread 3 got pointer: 00057164 Thread 4 got pointer: 000571d0
Notice how each thread encounters the malloc() and memset() commands and so receives and initializes its own allocation. (Exact pointer values will vary: these are illustrative.)
B.18.3.2. Per Thread Block Allocation
#include <stdlib.h> __global__ void mallocTest() { __shared__ int* data; // The first thread in the block does the allocation and initialization // and then shares the pointer with all other threads through shared memory, // so that access can easily be coalesced. // 64 bytes per thread are allocated. if (threadIdx.x == 0) { size_t size = blockDim.x * 64; data = (int*)malloc(size); memset(data, 0, size); } __syncthreads(); // Check for failure if (data == NULL) return; // Threads index into the memory, ensuring coalescence int* ptr = data; for (int i = 0; i < 64; ++i) ptr[i * blockDim.x + threadIdx.x] = threadIdx.x; // Ensure all threads complete before freeing __syncthreads(); // Only one thread may free the memory! if (threadIdx.x == 0) free(data); } int main() { cudaDeviceSetLimit(cudaLimitMallocHeapSize, 128*1024*1024); mallocTest<<<10, 128>>>(); cudaDeviceSynchronize(); return 0; }
B.18.3.3. Allocation Persisting Between Kernel Launches
#include <stdlib.h> #include <stdio.h> #define NUM_BLOCKS 20 __device__ int* dataptr[NUM_BLOCKS]; // Per-block pointer __global__ void allocmem() { // Only the first thread in the block does the allocation // since we want only one allocation per block. if (threadIdx.x == 0) dataptr[blockIdx.x] = (int*)malloc(blockDim.x * 4); __syncthreads(); // Check for failure if (dataptr[blockIdx.x] == NULL) return; // Zero the data with all threads in parallel dataptr[blockIdx.x][threadIdx.x] = 0; } // Simple example: store thread ID into each element __global__ void usemem() { int* ptr = dataptr[blockIdx.x]; if (ptr != NULL) ptr[threadIdx.x] += threadIdx.x; } // Print the content of the buffer before freeing it __global__ void freemem() { int* ptr = dataptr[blockIdx.x]; if (ptr != NULL) printf("Block %d, Thread %d: final value = %d\n", blockIdx.x, threadIdx.x, ptr[threadIdx.x]); // Only free from one thread! if (threadIdx.x == 0) free(ptr); } int main() { cudaDeviceSetLimit(cudaLimitMallocHeapSize, 128*1024*1024); // Allocate memory allocmem<<< NUM_BLOCKS, 10 >>>(); // Use memory usemem<<< NUM_BLOCKS, 10 >>>(); usemem<<< NUM_BLOCKS, 10 >>>(); usemem<<< NUM_BLOCKS, 10 >>>(); // Free memory freemem<<< NUM_BLOCKS, 10 >>>(); cudaDeviceSynchronize(); return 0; }
B.19. Execution Configuration
Any call to a __global__ function must specify the execution configuration for that call. The execution configuration defines the dimension of the grid and blocks that will be used to execute the function on the device, as well as the associated stream (see CUDA C Runtime for a description of streams).
The execution configuration is specified by inserting an expression of the form <<< Dg, Db, Ns, S >>> between the function name and the parenthesized argument list, where:
- Dg is of type dim3 (see dim3) and specifies the dimension and size of the grid, such that Dg.x * Dg.y * Dg.z equals the number of blocks being launched;
- Db is of type dim3 (see dim3) and specifies the dimension and size of each block, such that Db.x * Db.y * Db.z equals the number of threads per block;
- Ns is of type size_t and specifies the number of bytes in shared memory that is dynamically allocated per block for this call in addition to the statically allocated memory; this dynamically allocated memory is used by any of the variables declared as an external array as mentioned in __shared__; Ns is an optional argument which defaults to 0;
- S is of type cudaStream_t and specifies the associated stream; S is an optional argument which defaults to 0.
As an example, a function declared as
__global__ void Func(float* parameter);
must be called like this:
Func<<< Dg, Db, Ns >>>(parameter);
The arguments to the execution configuration are evaluated before the actual function arguments.
The function call will fail if Dg or Db are greater than the maximum sizes allowed for the device as specified in Compute Capabilities, or if Ns is greater than the maximum amount of shared memory available on the device, minus the amount of shared memory required for static allocation.
B.20. Launch Bounds
As discussed in detail in Multiprocessor Level, the fewer registers a kernel uses, the more threads and thread blocks are likely to reside on a multiprocessor, which can improve performance.
Therefore, the compiler uses heuristics to minimize register usage while keeping register spilling (see Device Memory Accesses) and instruction count to a minimum. An application can optionally aid these heuristics by providing additional information to the compiler in the form of launch bounds that are specified using the __launch_bounds__() qualifier in the definition of a __global__ function:
__global__ void __launch_bounds__(maxThreadsPerBlock, minBlocksPerMultiprocessor) MyKernel(...) { ... }
- maxThreadsPerBlock specifies the maximum number of threads per block with which the application will ever launch MyKernel(); it compiles to the .maxntidPTX directive;
- minBlocksPerMultiprocessor is optional and specifies the desired minimum number of resident blocks per multiprocessor; it compiles to the .minnctapersmPTX directive.
If launch bounds are specified, the compiler first derives from them the upper limit L on the number of registers the kernel should use to ensure that minBlocksPerMultiprocessor blocks (or a single block if minBlocksPerMultiprocessor is not specified) of maxThreadsPerBlock threads can reside on the multiprocessor (see Hardware Multithreading for the relationship between the number of registers used by a kernel and the number of registers allocated per block). The compiler then optimizes register usage in the following way:
- If the initial register usage is higher than L, the compiler reduces it further until it becomes less or equal to L, usually at the expense of more local memory usage and/or higher number of instructions;
- If the initial register usage is lower than L
- If maxThreadsPerBlock is specified and minBlocksPerMultiprocessor is not, the compiler uses maxThreadsPerBlock to determine the register usage thresholds for the transitions between n and n+1 resident blocks (i.e., when using one less register makes room for an additional resident block as in the example of Multiprocessor Level) and then applies similar heuristics as when no launch bounds are specified;
- If both minBlocksPerMultiprocessor and maxThreadsPerBlock are specified, the compiler may increase register usage as high as L to reduce the number of instructions and better hide single thread instruction latency.
A kernel will fail to launch if it is executed with more threads per block than its launch bound maxThreadsPerBlock.
Optimal launch bounds for a given kernel will usually differ across major architecture revisions. The sample code below shows how this is typically handled in device code using the __CUDA_ARCH__ macro introduced in Application Compatibility
#define THREADS_PER_BLOCK 256 #if __CUDA_ARCH__ >= 200 #define MY_KERNEL_MAX_THREADS (2 * THREADS_PER_BLOCK) #define MY_KERNEL_MIN_BLOCKS 3 #else #define MY_KERNEL_MAX_THREADS THREADS_PER_BLOCK #define MY_KERNEL_MIN_BLOCKS 2 #endif // Device code __global__ void __launch_bounds__(MY_KERNEL_MAX_THREADS, MY_KERNEL_MIN_BLOCKS) MyKernel(...) { ... }
In the common case where MyKernel is invoked with the maximum number of threads per block (specified as the first parameter of __launch_bounds__()), it is tempting to use MY_KERNEL_MAX_THREADS as the number of threads per block in the execution configuration:
// Host code MyKernel<<<blocksPerGrid, MY_KERNEL_MAX_THREADS>>>(...);
This will not work however since __CUDA_ARCH__ is undefined in host code as mentioned in Application Compatibility, so MyKernel will launch with 256 threads per block even when __CUDA_ARCH__ is greater or equal to 200. Instead the number of threads per block should be determined:
- Either at compile time using a macro that does not depend on __CUDA_ARCH__, for example
// Host code MyKernel<<<blocksPerGrid, THREADS_PER_BLOCK>>>(...);
- Or at runtime based on the compute capability
// Host code cudaGetDeviceProperties(&deviceProp, device); int threadsPerBlock = (deviceProp.major >= 2 ? 2 * THREADS_PER_BLOCK : THREADS_PER_BLOCK); MyKernel<<<blocksPerGrid, threadsPerBlock>>>(...);
Register usage is reported by the --ptxas options=-v compiler option. The number of resident blocks can be derived from the occupancy reported by the CUDA profiler (see Device Memory Accessesfor a definition of occupancy).
Register usage can also be controlled for all __global__ functions in a file using the maxrregcount compiler option. The value of maxrregcount is ignored for functions with launch bounds.
B.21. #pragma unroll
By default, the compiler unrolls small loops with a known trip count. The #pragma unroll directive however can be used to control unrolling of any given loop. It must be placed immediately before the loop and only applies to that loop. It is optionally followed by a number that specifies how many times the loop must be unrolled.
For example, in this code sample:
#pragma unroll 5 for (int i = 0; i < n; ++i)
the loop will be unrolled 5 times. The compiler will also insert code to ensure correctness (in the example above, to ensure that there will only be n iterations if n is less than 5, for example). It is up to the programmer to make sure that the specified unroll number gives the best performance.
#pragma unroll 1 will prevent the compiler from ever unrolling a loop.
If no number is specified after #pragma unroll, the loop is completely unrolled if its trip count is constant, otherwise it is not unrolled at all.
B.22. SIMD Video Instructions
PTX ISA version 3.0 includes SIMD (Single Instruction, Multiple Data) video instructions which operate on pairs of 16-bit values and quads of 8-bit values. These are available on devices of compute capability 3.0.
- vadd2, vadd4
- vsub2, vsub4
- vavrg2, vavrg4
- vabsdiff2, vabsdiff4
- vmin2, vmin4
- vmax2, vmax4
- vset2, vset4
The basic syntax of an asm() statement is:
asm("template-string" : "constraint"(output) : "constraint"(input)"));
An example of using the vabsdiff4 PTX instruction is:
asm("vabsdiff4.u32.u32.u32.add" " %0, %1, %2, %3;": "=r" (result):"r" (A), "r" (B), "r" (C));
This uses the vabsdiff4 instruction to compute an integer quad byte SIMD sum of absolute differences. The absolute difference value is computed for each byte of the unsigned integers A and B in SIMD fashion. The optional accumulate operation (.add) is specified to sum these differences.
Refer to the document "Using Inline PTX Assembly in CUDA" for details on using the assembly statement in your code. Refer to the PTX ISA documentation ("Parallel Thread Execution ISA Version 3.0" for example) for details on the PTX instructions for the version of PTX that you are using.
C. CUDA Dynamic Parallelism
C.1. Introduction
C.1.1. Overview
Dynamic Parallelism is an extension to the CUDA programming model enabling a CUDA kernel to create and synchronize with new work directly on the GPU. The creation of parallelism dynamically at whichever point in a program that it is needed offers exciting new capabilities.
The ability to create work directly from the GPU can reduce the need to transfer execution control and data between host and device, as launch configuration decisions can now be made at runtime by threads executing on the device. Additionally, data-dependent parallel work can be generated inline within a kernel at run-time, taking advantage of the GPU's hardware schedulers and load balancers dynamically and adapting in response to data-driven decisions or workloads. Algorithms and programming patterns that had previously required modifications to eliminate recursion, irregular loop structure, or other constructs that do not fit a flat, single-level of parallelism may more transparently be expressed.
This document describes the extended capabilities of CUDA which enable Dynamic Parallelism, including the modifications and additions to the CUDA programming model necessary to take advantage of these, as well as guidelines and best practices for exploiting this added capacity.
Dynamic Parallelism is only supported by devices of compute capability 3.5 and higher.
C.1.2. Glossary
Definitions for terms used in this guide.
-
Grid
- A Grid is a collection of Threads. Threads in a Grid execute a Kernel Function and are divided into Thread Blocks. Thread Block
- A Thread Block is a group of threads which execute on the same multiprocessor ( SMX). Threads within a Thread Block have access to shared memory and can be explicitly synchronized. Kernel Function
- A Kernel Function is an implicitly parallel subroutine that executes under the CUDA execution and memory model for every Thread in a Grid. Host
- The Host refers to the execution environment that initially invoked CUDA. Typically the thread running on a system's CPU processor. Parent
- A Parent Thread, Thread Block, or Grid is one that has launched new grid(s), the Child Grid(s). The Parent is not considered completed until all of its launched Child Grids have also completed. Child
- A Child thread, block, or grid is one that has been launched by a Parent grid. A Child grid must complete before the Parent Thread, Thread Block, or Grid are considered complete. Thread Block Scope
- Objects with Thread Block Scope have the lifetime of a single Thread Block. They only have defined behavior when operated on by Threads in the Thread Block that created the object and are destroyed when the Thread Block that created them is complete. Device Runtime
- The Device Runtime refers to the runtime system and APIs available to enable Kernel Functions to use Dynamic Parallelism.
C.2. Execution Environment and Memory Model
C.2.1. Execution Environment
The CUDA execution model is based on primitives of threads, thread blocks, and grids, with kernel functions defining the program executed by individual threads within a thread block and grid. When a kernel function is invoked the grid's properties are described by an execution configuration, which has a special syntax in CUDA. Support for dynamic parallelism in CUDA extends the ability to configure, launch, and synchronize upon new grids to threads that are running on the device.
C.2.1.1. Parent and Child Grids
A device thread that configures and launches a new grid belongs to the parent grid, and the grid created by the invocation is a child grid.
The invocation and completion of child grids is properly nested, meaning that the parent grid is not considered complete until all child grids created by its threads have completed. Even if the invoking threads do not explicitly synchronize on the child grids launched, the runtime guarantees an implicit synchronization between the parent and child.

C.2.1.2. Scope of CUDA Primitives
On both host and device, the CUDA runtime offers an API for launching kernels, for waiting for launched work to complete, and for tracking dependencies between launches via streams and events. On the host system, the state of launches and the CUDA primitives referencing streams and events are shared by all threads within a process; however processes execute independently and may not share CUDA objects.
A similar hierarchy exists on the device: launched kernels and CUDA objects are visible to all threads in a thread block, but are independent between thread blocks. This means for example that a stream may be created by one thread and used by any other thread in the same thread block, but may not be shared with threads in any other thread block.
C.2.1.3. Synchronization
CUDA runtime operations from any thread, including kernel launches, are visible across a thread block. This means that an invoking thread in the parent grid may perform synchronization on the grids launched by that thread, by other threads in the thread block, or on streams created within the same thread block. Execution of a thread block is not considered complete until all launches by all threads in the block have completed. If all threads in a block exit before all child launches have completed, a synchronization operation will automatically be triggered.
C.2.1.4. Streams and Events
CUDA Streams and Events allow control over dependencies between grid launches: grids launched into the same stream execute in-order, and events may be used to create dependencies between streams. Streams and events created on the device serve this exact same purpose.
Streams and events created within a grid exist within thread block scope but have undefined behavior when used outside of the thread block where they were created. As described above, all work launched by a thread block is implicitly synchronized when the block exits; work launched into streams is included in this, with all dependencies resolved appropriately. The behavior of operations on a stream that has been modified outside of thread block scope is undefined.
Streams and events created on the host have undefined behavior when used within any kernel, just as streams and events created by a parent grid have undefined behavior if used within a child grid.
C.2.1.5. Ordering and Concurrency
The ordering of kernel launches from the device runtime follows CUDA Stream ordering semantics. Within a thread block, all kernel launches into the same stream are executed in-order. With multiple threads in the same thread block launching into the same stream, the ordering within the stream is dependent on the thread scheduling within the block, which may be controlled with synchronization primitives such as __syncthreads().
Note that because streams are shared by all threads within a thread block, the implicit NULL stream is also shared. If multiple threads in a thread block launch into the implicit stream, then these launches will be executed in-order. If concurrency is desired, explicit named streams should be used.
Dynamic Parallelism enables concurrency to be expressed more easily within a program; however, the device runtime introduces no new concurrency guarantees within the CUDA execution model. There is no guarantee of concurrent execution between any number of different thread blocks on a device.
The lack of concurrency guarantee extends to parent thread blocks and their child grids. When a parent thread block launches a child grid, the child is not guaranteed to begin execution until the parent thread block reaches an explicit synchronization point (e.g. cudaDeviceSynchronize()).
While concurrency will often easily be achieved, it may vary as a function of deviceconfiguration, application workload, and runtime scheduling. It is therefore unsafe to depend upon any concurrency between different thread blocks.
C.2.1.6. Device Management
There is no multi-GPU support from the device runtime; the device runtime is only capable of operating on the device upon which it is currently executing. It is permitted, however, to query properties for any CUDA capable device in the system.
C.2.2. Memory Model
Parent and child grids share the same global and constant memory storage, but have distinct local and shared memory.
C.2.2.1. Coherence and Consistency
C.2.2.1.1. Global Memory
Parent and child grids have coherent access to global memory, with weak consistency guarantees between child and parent. There are two points in the execution of a child grid when its view of memory is fully consistent with the parent thread: when the child grid is invoked by the parent, and when the child grid completes as signaled by a synchronization API invocation in the parent thread.
All global memory operations in the parent thread prior to the child grid's invocation are visible to the child grid. All memory operations of the child grid are visible to the parent after the parent has synchronized on the child grid's completion.
In the following example, the child grid executing child_launch is only guaranteed to see the modifications to data made before the child grid was launched. Since thread 0 of the parent is performing the launch, the child will be consistent with the memory seen by thread 0 of the parent. Due to the first __syncthreads() call, the child will see data[0]=0, data[1]=1, ..., data[255]=255 (without the __syncthreads() call, only data[0] would be guaranteed to be seen by the child). When the child grid returns, thread 0 is guaranteed to see modifications made by the threads in its child grid. Those modifications become available to the other threads of the parent grid only after the second __syncthreads() call:
__global__ void child_launch(int *data) { data[threadIdx.x] = data[threadIdx.x]+1; } __global__ void parent_launch(int *data) { data[threadIdx.x] = threadIdx.x; __syncthreads(); if (threadIdx.x == 0) { child_launch<<< 1, 256 >>>(data); cudaDeviceSynchronize(); } __syncthreads(); } void host_launch(int *data) { parent_launch<<< 1, 256 >>>(data); }
C.2.2.1.2. Zero Copy Memory
Zero-copy system memory has identical coherence and consistency guarantees to global memory, and follows the semantics detailed above. A kernel may not allocate or free zero-copy memory, but may use pointers to zero-copy passed in from the host program.
C.2.2.1.3. Constant Memory
Constants are immutable and may not be modified from the device, even between parent and child launches. That is to say, the value of all __constant__ variables must be set from the host prior to launch. Constant memory is inherited automatically by all child kernels from their respective parents.
Taking the address of a constant memory object from within a kernel thread has the same semantics as for all CUDA programs, and passing that pointer from parent to child or from a child to parent is naturally supported.
C.2.2.1.5. Local Memory
Local memory is private storage for an executing thread, and is not visible outside of that thread. It is illegal to pass a pointer to local memory as a launch argument when launching a child kernel. The result of dereferencing such a local memory pointer from a child will be undefined.
For example the following is illegal, with undefined behavior if x_array is accessed by child_launch:
int x_array[10]; // Creates x_array in parent's local memory child_launch<<< 1, 1 >>>(x_array);
It is sometimes difficult for a programmer to be aware of when a variable is placed into local memory by the compiler. As a general rule, all storage passed to a child kernel should be allocated explicitly from the global-memory heap, either with cudaMalloc(), new() or by declaring __device__ storage at global scope. For example:
// Correct - "value" is global storage __device__ int value; __device__ void x() { value = 5; child<<< 1, 1 >>>(&value); }
// Invalid - "value" is local storage __device__ void y() { int value = 5; child<<< 1, 1 >>>(&value); }
C.2.2.1.6. Texture Memory
Writes to the global memory region over which a texture is mapped are incoherent with respect to texture accesses. Coherence for texture memory is enforced at the invocation of a child grid and when a child grid completes. This means that writes to memory prior to a child kernel launch are reflected in texture memory accesses of the child. Similarly, writes to memory by a child will be reflected in the texture memory accesses by a parent, but only after the parent synchronizes on the child's completion. Concurrent accesses by parent and child may result in inconsistent data.
C.3. Programming Interface
C.3.1. CUDA C/C++ Reference
This section describes changes and additions to the CUDA C/C++ language extensions for supporting Dynamic Parallelism.
The language interface and API available to CUDA kernels using CUDA C/C++ for Dynamic Parallelism, referred to as the Device Runtime, is substantially like that of the CUDA Runtime API available on the host. Where possible the syntax and semantics of the CUDA Runtime API have been retained in order to facilitate ease of code reuse for routines that may run in either the host or device environments.
As with all code in CUDA C/C++, the APIs and code outlined here is per-thread code. This enables each thread to make unique, dynamic decisions regarding what kernel or operation to execute next. There are no synchronization requirements between threads within a block to execute any of the provided device runtime APIs, which enables the device runtime API functions to be called in arbitrarily divergent kernel code without deadlock.
C.3.1.1. Device-Side Kernel Launch
Kernels may be launched from the device using the standard CUDA <<< >>> syntax:
kernel_name<<< Dg, Db, Ns, S >>>([kernel arguments]);
- Dg is of type dim3 and specifies the dimensions and size of the grid
- Db is of type dim3 and specifies the dimensions and size of each thread block
- Ns is of type size_t and specifies the number of bytes of shared memory that is dynamically allocated per thread block for this call and addition to statically allocated memory. Ns is an optional argument that defaults to 0.
- S is of type cudaStream_t and specifies the stream associated with this call. The stream must have been allocated in the same thread block where the call is being made. S is an optional argument that defaults to 0.
C.3.1.1.1. Launches are Asynchronous
Identical to host-side launches, all device-side kernel launches are asynchronous with respect to the launching thread. That is to say, the <<<>>> launch command will return immediately and the launching thread will continue to execute until it hits an explicit launch-synchronization point such as cudaDeviceSynchronize(). The grid launch is posted to the device and will execute independently of the parent thread. The child grid may begin execution at any time after launch, but is not guaranteed to begin execution until the launching thread reaches an explicit launch-synchronization point.
C.3.1.1.2. Launch Environment Configuration
All global device configuration settings (e.g., shared memory and L1 cache size as returned from cudaDeviceGetCacheConfig(), and device limits returned from cudaDeviceGetLimit()) will be inherited from the parent. That is to say if, when the parent is launched, execution is configured globally for 16k of shared memory and 48k of L1 cache, then the child's execution state will be configured identically. Likewise, device limits such as stack size will remain as-configured.
For host-launched kernels, per-kernel configurations set from the host will take precedence over the global setting. These configurations will be used when the kernel is launched from the device as well. It is not possible to reconfigure a kernel's environment from the device.
C.3.1.1.3. Launch from __host__ __device__ Functions
Although the device runtime enables kernel launches from either the host or device, kernel launches from __host__ __device__ functions are unsupported. The compiler will fail to compile if a __host__ device__ function is used to launch a kernel.
C.3.1.2. Streams
Both named and unnamed (NULL) streams are available from the device runtime. Named streams may be used by any thread within a thread-block, but stream handles may not be passed to other blocks or child/parent kernels. In other words, a stream should be treated as private to the block in which it is created. Stream handles are not guaranteed to be unique between blocks, so using a stream handle within a block that did not allocate it will result in undefined behavior.
Similar to host-side launch, work launched into separate streams may run concurrently, but actual concurrency is not guaranteed. Programs that depend upon concurrency between child kernels are not supported by the CUDA programming model and will have undefined behavior.
The host-side NULL stream's cross-stream barrier semantic is not supported on the device (see below for details). In order to retain semantic compatibility with the host runtime, all device streams must be created using the cudaStreamCreateWithFlags() API, passing the cudaStreamNonBlocking flag. The cudaStreamCreate() call is a host-runtime- only API and will fail to compile for the device.
As cudaStreamSynchronize() and cudaStreamQuery() are unsupported by the device runtime, cudaDeviceSynchronize() should be used instead when the application needs to know that stream-launched child kernels have completed.
C.3.1.2.1. The Implicit (NULL) Stream
Within a host program, the unnamed (NULL) stream has additional barrier synchronization semantics with other streams (see Default Stream for details). The device runtime offers a single implicit, unnamed stream shared between all threads in a block, but as all named streams must be created with the cudaStreamNonBlocking flag, work launched into the NULL stream will not insert an implicit dependency on pending work in any other streams.
C.3.1.3. Events
Only the inter-stream synchronization capabilities of CUDA events are supported. This means that cudaStreamWaitEvent() is supported, but cudaEventSynchronize(), cudaEventElapsedTime(), and cudaEventQuery() are not. As cudaEventElapsedTime() is not supported, cudaEvents must be created via cudaEventCreateWithFlags(), passing the cudaEventDisableTiming flag.
As for all device runtime objects, event objects may be shared between all threads withinthe thread-block which created them but are local to that block and may not be passed to other kernels, or between blocks within the same kernel. Event handles are not guaranteed to be unique between blocks, so using an event handle within a block that did not create it will result in undefined behavior.
C.3.1.4. Synchronization
The cudaDeviceSynchronize() function will synchronize on all work launched by any thread in the thread-block up to the point where cudaDeviceSynchronize() was called. Note that cudaDeviceSynchronize() may be called from within divergent code (see Block Wide Synchronization).
It is up to the program to perform sufficient additional inter-thread synchronization, for example via a call to __syncthreads(), if the calling thread is intended to synchronize with child grids invoked from other threads.
C.3.1.4.1. Block Wide Synchronization
The cudaDeviceSynchronize() function does not imply intra-block synchronization. In particular, without explicit synchronization via a __syncthreads() directive the calling thread can make no assumptions about what work has been launched by any thread other than itself. For example if multiple threads within a block are each launching work and synchronization is desired for all this work at once (perhaps because of event-based dependencies), it is up to the program to guarantee that this work is submitted by all threads before calling cudaDeviceSynchronize().
Because the implementation is permitted to synchronize on launches from any thread in the block, it is quite possible that simultaneous calls to cudaDeviceSynchronize() by multiple threads will drain all work in the first call and then have no effect for the later calls.
C.3.1.5. Device Management
Only the device on which a kernel is running will be controllable from that kernel. This means that device APIs such as cudaSetDevice() are not supported by the device runtime. The active device as seen from the GPU (returned from cudaGetDevice()) will have the same device number as seen from the host system. The cudaGetDeviceProperty() call may request information about another device as this API allows specification of a device ID as a parameter of the call. Note that the catch-all cudaGetDeviceProperties() API is not offered by the device runtime - properties must be queried individually.
C.3.1.6. Memory Declarations
C.3.1.6.1. Device and Constant Memory
Memory declared at file scope with __device__ or __constant__ qualifiers behave identically when using the device runtime. All kernels may read or write device variables, whether the kernel was initially launched by the host or device runtime. Equivalently, all kernels will have the same view of __constant__s as declared at the module scope.
C.3.1.6.2. Textures & Surfaces
CUDA supports dynamically created texture and surface objects1, where a texture reference may be created on the host, passed to a kernel, used by that kernel, and then destroyed from the host. The device runtime does not allow creation or destruction of texture or surface objects from within device code, but texture and surface objects created from the host may be used and passed around freely on the device. Regardless of where they are created, dynamically created texture objects are always valid and may be passed to child kernels from a parent.
C.3.1.6.4. Symbol Addresses
Device-side symbols (i.e., those marked __device__) may be referenced from within a kernel simply via the & operator, as all global-scope device variables are in the kernel's visible address space. This also applies to __constant__ symbols, although in this case the pointer will reference read-only data.
Given that device-side symbols can be referenced directly, those CUDA runtime APIs which reference symbols (e.g., cudaMemcpyToSymbol() or cudaGetSymbolAddress()) are redundant and hence not supported by the device runtime. Note this implies that constant data cannot be altered from within a running kernel, even ahead of a child kernel launch, as references to __constant__ space are read-only.
C.3.1.7. API Errors and Launch Failures
As usual for the CUDA runtime, any function may return an error code. The last error code returned is recorded and may be retrieved via the cudaGetLastError() call. Errors are recorded per-thread, so that each thread can identify the most recent error that it has generated. The error code is of type cudaError_t.
Similar to a host-side launch, device-side launches may fail for many reasons (invalid arguments, etc). The user must call cudaGetLastError() to determine if a launch generated an error, however lack of an error after launch does not imply the child kernel completed successfully.
For device-side exceptions, e.g., access to an invalid address, an error in a child grid will be returned to the host instead of being returned by the parent's call to cudaDeviceSynchronize().
C.3.1.7.1. Launch Setup APIs
Kernel launch is a system-level mechanism exposed through the device runtime library, and as such is available directly from PTX via the underlying cudaGetParameterBuffer() and cudaLaunchDevice() APIs. It is permitted for a CUDA application to call these APIs itself, with the same requirements as for PTX. In both cases, the user is then responsible for correctly populating all necessary data structures in the correct format according to specification. Backwards compatibility is guaranteed in these data structures.
As with host-side launch, the device-side operator <<<>>> maps to underlying kernel launch APIs. This is so that users targeting PTX will be able to enact a launch, and so that the compiler front-end can translate <<<>>> into these calls.
Runtime API Launch Functions | Description of Difference From Host Runtime Behaviour (behaviour is identical if no description) |
---|---|
cudaGetParameterBuffer | Generated automatically from <<<>>>. Note different API to host equivalent. |
cudaLaunchDevice | Generated automatically from <<<>>>. Note different API to host equivalent. |
The APIs for these launch functions are different to those of the CUDA Runtime API, and are defined as follows:
extern device cudaError_t cudaGetParameterBuffer(void **params); extern __device__ cudaError_t cudaLaunchDevice(void *kernel, void *params, dim3 gridDim, dim3 blockDim, unsigned int sharedMemSize = 0, cudaStream_t stream = 0);
C.3.1.8. API Reference
The portions of the CUDA Runtime API supported in the device runtime are detailed here. Host and device runtime APIs have identical syntax; semantics are the same except where indicated. The table below provides an overview of the API relative to the version available from the host.
C.3.2. Device-side Launch from PTX
This section is for the programming language and compiler implementers who target Parallel Thread Execution (PTX) and plan to support Dynamic Parallelism in their language. It provides the low-level details related to supporting kernel launches at the PTX level.
C.3.2.1. Kernel Launch APIs
Device-side kernel launches can be implemented using the following two APIs accessible from PTX: cudaLaunchDevice() and cudaGetParameterBuffer(). cudaLaunchDevice() launches the specified kernel with the parameter buffer that is obtained by calling cudaGetParameterBuffer() and filled with the parameters to the launched kernel. The parameter buffer can be NULL, i.e., no need to invoke cudaGetParameterBuffer(), if the launched kernel does not take any parameters.
C.3.2.1.1. cudaLaunchDevice
At the PTX level, cudaLaunchDevice()needs to be declared in one of the two forms shown below before it is used.
// PTX-level Declaration of cudaLaunchDevice() when .address_size is 64 .extern .func(.param .b32 func_retval0) cudaLaunchDevice ( .param .b64 func, .param .b64 parameterBuffer, .param .align 4 .b8 gridDimension[12], .param .align 4 .b8 blockDimension[12], .param .b32 sharedMemSize, .param .b64 stream ) ;
// PTX-level Declaration of cudaLaunchDevice() when .address_size is 32 .extern .func(.param .b32 func_retval0) cudaLaunchDevice ( .param .b32 func, .param .b32 parameterBuffer, .param .align 4 .b8 gridDimension[12], .param .align 4 .b8 blockDimension[12], .param .b32 sharedMemSize, .param .b32 stream ) ;
The CUDA-level declaration below is mapped to one of the aforementioned PTX-level declarations and is found in the system header file cuda_device_runtime_api.h. The function is defined in the cudadevrt system library, which must be linked with a program in order to use device-side kernel launch functionality.
// CUDA-level declaration of cudaLaunchDevice() extern "C" __device__ cudaError_t cudaLaunchDevice(void *func, void *parameterBuffer, dim3 gridDimension, dim3 blockDimension, unsigned int sharedMemSize, cudaStream_t stream);
The first parameter is a pointer to the kernel to be is launched, and the second parameter is the parameter buffer that holds the actual parameters to the launched kernel. The layout of the parameter buffer is explained in Parameter Buffer Layout, below. Other parameters specify the launch configuration, i.e., as grid dimension, block dimension, shared memory size, and the stream associated with the launch (please refer to Execution Configuration for the detailed description of launch configuration.
C.3.2.1.2. cudaGetParameterBuffer
cudaGetParameterBuffer() needs to be declared at the PTX level before it's used. The PTX-level declaration must be in one of the two forms given below, depending on address size:
// PTX-level Declaration of cudaGetParameterBuffer() when .address_size is 64 // When .address_size is 64 .extern .func(.param .b64 func_retval0) cudaGetParameterBuffer ( .param .b64 alignment, .param .b64 size ) ;
// PTX-level Declaration of cudaGetParameterBuffer() when .address_size is 32 .extern .func(.param .b32 func_retval0) cudaGetParameterBuffer ( .param .b32 alignment, .param .b32 size ) ;
The following CUDA-level declaration of cudaGetParameterBuffer() is mapped to the aforementioned PTX-level declaration:
// CUDA-level Declaration of cudaGetParameterBuffer() extern "C" __device__ void *cudaGetParameterBuffer(size_t alignment, size_t size);
The first parameter specifies the alignment requirement of the parameter buffer and the second parameter the size requirement in bytes. In the current implementation, the parameter buffer returned by cudaGetParameterBuffer() is always guaranteed to be 64- byte aligned, and the alignment requirement parameter is ignored. However, it is recommended to pass the correct alignment requirement value - which is the largest alignment of any parameter to be placed in the parameter buffer - to cudaGetParameterBuffer() to ensure portability in the future.
C.3.2.2. Parameter Buffer Layout
Parameter reordering in the parameter buffer is prohibited, and each individual parameter placed in the parameter buffer is required to be aligned. That is, each parameter must be placed at the nth byte in the parameter buffer, where n is the smallest multiple of the parameter size that is greater than the offset of the last byte taken by the preceding parameter. The maximum size of the parameter buffer is 4KB.
For a more detailed description of PTX code generated by the CUDA compiler, please refer to the PTX-3.5 specification.
C.3.3. Toolkit Support for Dynamic Parallelism
C.3.3.1. Including Device Runtime API in CUDA Code
Similar to the host-side runtime API, prototypes for the CUDA device runtime API are included automatically during program compilation. There is no need to include cuda_device_runtime_api.h explicitly.
C.3.3.2. Compiling and Linking
CUDA programs are automatically linked with the host runtime library when compiled with nvcc, but the device runtime is shipped as a static library which must explicitly be linked with a program which wishes to use it.
The device runtime is offered as a static library (cudadevrt.lib on Windows, libcudadevrt.a under Linux and MacOS), against which a GPU application that uses the device runtime must be linked. Linking of device libraries can be accomplished through nvcc and/or nvlink. Two simple examples are shown below.
A device runtime program may be compiled and linked in a single step, if all required source files can be specified from the command line:
$ nvcc -arch=sm_35 -rdc=true hello_world.cu -o hello -lcudadevrt
It is also possible to compile CUDA .cu source files first to object files, and then link these together in a two-stage process:
$ nvcc -arch=sm_35 -dc hello_world.cu -o hello_world.o $ nvcc -arch=sm_35 -rdc=true hello_world.o -o hello -lcudadevrt
Please see the Using Separate Compilation section of The CUDA Driver Compiler NVCC guide for more details.
C.4. Programming Guidelines
C.4.1. Basics
The device runtime is a functional subset of the host runtime. API level device management, kernel launching, device memcpy, stream management, and event management are exposed from the device runtime.
Programming for the device runtime should be familiar to someone who already has experience with CUDA. Device runtime syntax and semantics are largely the same as that of the host API, with any exceptions detailed earlier in this document.
The following example shows a simple Hello World program incorporating dynamic parallelism:
#include <stdio.h> __global__ void childKernel() { printf("Hello "); } __global__ void parentKernel() { // launch child childKernel<<<1,1>>>(); if (cudaSuccess != cudaGetLastError()) { return; } // wait for child to complete if (cudaSuccess != cudaDeviceSynchronize()) { return; } printf("World!\n"); } int main(int argc, char *argv[]) { // launch parent parentKernel<<<1,1>>>(); if (cudaSuccess != cudaGetLastError()) { return 1; } // wait for parent to complete if (cudaSuccess != cudaDeviceSynchronize()) { return 2; } return 0; }
This program may be built in a single step from the command line as follows:
$ nvcc -arch=sm_35 -rdc=true hello_world.cu -o hello -lcudadevrt
C.4.2. Performance
C.4.2.1. Synchronization
Synchronization by one thread may impact the performance of other threads in the same Thread Block, even when those other threads do not call cudaDeviceSynchronize() themselves. This impact will depend upon the underlying implementation.
C.4.2.2. Dynamic-parallelism-enabled Kernel Overhead
System software which is active when controlling dynamic launches may impose an overhead on any kernel which is running at the time, whether or not it invokes kernel launches of its own. This overhead arises from the device runtime's execution tracking and management software and may result in decreased performance for e.g., library calls when made from the device compared to from the host side. This overhead is, in general, incurred for applications that link against the device runtime library.
C.4.3. Implementation Restrictions and Limitations
Dynamic Parallelism guarantees all semantics described in this document, however, certain hardware and software resources are implementation-dependent and limit the scale, performance and other properties of a program which uses the device runtime.
C.4.3.1. Runtime
C.4.3.1.1. Memory Footprint
The device runtime system software reserves memory for various management purposes, in particular one reservation which is used for saving parent-grid state during synchronization, and a second reservation for tracking pending grid launches. Configuration controls are available to reduce the size of these reservations in exchange for certain launch limitations. See Configuration Options, below, for details.
The majority of reserved memory is allocated as backing-store for parent kernel state, for use when synchronizing on a child launch. Conservatively, this memory must support storing of state for the maximum number of live threads possible on the device. This means that each parent generation at which cudaDeviceSynchronize() is callable may require up to 150MB of device memory, depending on the device configuration, which will be unavailable for program use even if it is not all consumed.
C.4.3.1.2. Nesting and Synchronization Depth
Using the device runtime, one kernel may launch another kernel, and that kernel may launch another, and so on. Each subordinate launch is considered a new nesting level, and the total number of levels is the nesting depth of the program. The synchronization depth is defined as the deepest level at which the program will explicitly synchronize on a child launch. Typically this is one less than the nesting depth of the program, but if the program does not need to call cudaDeviceSynchronize() at all levels then the synchronization depth might be substantially different to the nesting depth.
The overall maximum nesting depth is limited to 24, but practically speaking the real limit will be the amount of memory required by the system for each new level (see Memory Footprint above). Any launch which would result in a kernel at a deeper level than the maximum will fail. Note that this may also apply to cudaMemcpyAsync(), which might itself generate a kernel launch. See Configuration Options for details.
By default, sufficient storage is reserved for two levels of synchronization. This maximum synchronization depth (and hence reserved storage) may be controlled by calling cudaDeviceSetLimit() and specifying cudaLimitDevRuntimeSyncDepth. The number of levels to be supported must be configured before the top-level kernel is launched from the host, in order to guarantee successful execution of a nested program. Calling cudaDeviceSynchronize() at a depth greater than the specified maximum synchronization depth will return an error.
An optimization is permitted where the system detects that it need not reserve space for the parent's state in cases where the parent kernel never calls cudaDeviceSynchronize(). In this case, because explicit parent/child synchronization never occurs, the memory footprint required for a program will be much less than the conservative maximum. Such a program could specify a shallower maximum synchronization depth to avoid over-allocation of backing store.
C.4.3.1.3. Pending Kernel Launches
When a kernel is launched, all associated configuration and parameter data is tracked until the kernel completes. This data is stored within a system-managed launch pool.
The launch pool is divided into a fixed-size pool and a virtualized pool with lower performance. The device runtime system software will try to track launch data in the fixed-size pool first. The virtualized pool will be used to track new launches when the fixed-size pool is full.
The size of the fixed-size launch pool is configurable by calling cudaDeviceSetLimit() from the host and specifying cudaLimitDevRuntimePendingLaunchCount.
C.4.3.1.4. Configuration Options
Resource allocation for the device runtime system software is controlled via the cudaDeviceSetLimit() API from the host program. Limits must be set before any kernel is launched, and may not be changed while the GPU is actively running programs.
The following named limits may be set:
Limit | Behavior |
---|---|
cudaLimitDevRuntimeSyncDepth | Sets the maximum depth at which cudaDeviceSynchronize() may be called. Launches may be performed deeper than this, but explicit synchronization deeper than this limit will return the cudaErrorLaunchMaxDepthExceeded. The default maximum sync depth is 2. |
cudaLimitDevRuntimePendingLaunchCount | Controls the amount of memory set aside for buffering kernel launches which have not yet begun to execute, due either to unresolved dependencies or lack of execution resources. When the buffer is full, the device runtime system software will attempt to track new pending launches in a lower performance virtualized buffer. If the virtualized buffer is also full, i.e. when all available heap space is consumed, launches will not occur, and the thread's last error will be set to cudaErrorLaunchPendingCountExceeded. The default pending launch count is 2048 launches. |
C.4.3.1.5. Memory Allocation and Lifetime
cudaMalloc() and cudaFree() have distinct semantics between the host and device environments. When invoked from the host, cudaMalloc() allocates a new region from unused device memory. When invoked from the device runtime these functions map to device-side malloc() and free(). This implies that within the device environment the total allocatable memory is limited to the device malloc() heap size, which may be smaller than the available unused device memory. Also, it is an error to invoke cudaFree() from the host program on a pointer which was allocated by cudaMalloc() on the device or vice-versa.
cudaMalloc() on Host | cudaMalloc() on Device | |
---|---|---|
cudaFree() on Host | Supported | Not Supported |
cudaFree() on Device | Not Supported | Supported |
Allocation limit | Free device memory | cudaLimitMallocHeapSize |
C.4.3.1.6. SM Id and Warp Id
Note that in PTX %smid and %warpid are defined as volatile values. The device runtime may reschedule thread blocks onto different SMs in order to more efficiently manage resources. As such, it is unsafe to rely upon %smid or %warpid remaining unchanged across the lifetime of a thread or thread block.
C.4.3.1.7. ECC Errors
No notification of ECC errors is available to code within a CUDA kernel. ECC errors are reported at the host side once the entire launch tree has completed. Any ECC errors which arise during execution of a nested program will either generate an exception or continue execution (depending upon error and configuration).
D. Mathematical Functions
The reference manual lists, along with their description, all the functions of the C/C++ standard library mathematical functions that are supported in device code, as well as all intrinsic functions (that are only supported in device code).
This appendix provides accuracy information for some of these functions when applicable.
D.1. Standard Functions
The functions from this section can be used in both host and device code.
This section specifies the error bounds of each function when executed on the device and also when executed on the host in the case where the host does not supply the function.
The error bounds are generated from extensive but not exhaustive tests, so they are not guaranteed bounds.
Single-Precision Floating-Point Functions
Addition and multiplication are IEEE-compliant, so have a maximum error of 0.5 ulp.
The recommended way to round a single-precision floating-point operand to an integer, with the result being a single-precision floating-point number is rintf(), not roundf(). The reason is that roundf() maps to an 8-instruction sequence on the device, whereas rintf() maps to a single instruction. truncf(), ceilf(), and floorf() each map to a single instruction as well.
Function | Maximum ulp error |
---|---|
x+y | 0 (IEEE-754 round-to-nearest-even) |
x*y | 0 (IEEE-754 round-to-nearest-even) |
x/y | 0 for compute capability ≥ 2 when compiled with -prec-div=true 2 (full range), otherwise |
1/x | 0 for compute capability ≥ 2 when compiled with -prec-div=true 1 (full range), otherwise |
rsqrtf(x) 1/sqrtf(x) | 2 (full range) Applies to 1/sqrtf(x) only when it is converted to rsqrtf(x) by the compiler. |
sqrtf(x) | 0 for compute capability ≥ 2 when compiled with -prec-sqrt=true 3 (full range), otherwise |
cbrtf(x) | 1 (full range) |
rcbrtf(x) | 1 (full range) |
hypotf(x,y) | 3 (full range) |
rhypotf(x,y) | 2 (full range) |
norm3df(x,y,z) | 3 (full range) |
rnorm3df(x,y,z) | 2 (full range) |
norm4df(x,y,z,t) | 3 (full range) |
rnorm4df(x,y,z,t) | 2 (full range) |
normf(dim,arr) | 4 (full range) |
rnormf(dim,arr) | 3 (full range) |
expf(x) | 2 (full range) |
exp2f(x) | 2 (full range) |
exp10f(x) | 2 (full range) |
expm1f(x) | 1 (full range) |
logf(x) | 1 (full range) |
log2f(x) | 2 (full range) |
log10f(x) | 2 (full range) |
log1pf(x) | 2 (full range) |
sinf(x) | 2 (full range) |
cosf(x) | 2 (full range) |
tanf(x) | 4 (full range) |
sincosf(x,sptr,cptr) | 2 (full range) |
sinpif(x) | 2 (full range) |
cospif(x) | 2 (full range) |
sincospif(x,sptr,cptr) | 2 (full range) |
asinf(x) | 4 (full range) |
acosf(x) | 3 (full range) |
atanf(x) | 2 (full range) |
atan2f(y,x) | 3 (full range) |
sinhf(x) | 3 (full range) |
coshf(x) | 2 (full range) |
tanhf(x) | 2 (full range) |
asinhf(x) | 3 (full range) |
acoshf(x) | 4 (full range) |
atanhf(x) | 3 (full range) |
powf(x,y) | 8 (full range) |
erff(x) | 2 (full range) |
erfcf(x) | 4 (full range) |
erfinvf(x) | 2 (full range) |
erfcinvf(x) | 2 (full range) |
erfcxf(x) | 4 (full range) |
normcdff(x) | 5 (full range) |
normcdfinvf(x) | 5 (full range) |
lgammaf(x) | 6 (outside interval -10.001 ... -2.264; larger inside) |
tgammaf(x) | 11 (full range) |
fmaf(x,y,z) | 0 (full range) |
frexpf(x,exp) | 0 (full range) |
ldexpf(x,exp) | 0 (full range) |
scalbnf(x,n) | 0 (full range) |
scalblnf(x,l) | 0 (full range) |
logbf(x) | 0 (full range) |
ilogbf(x) | 0 (full range) |
j0f(x) | 9 for |x| < 8 otherwise, the maximum absolute error is 2.2 x 10-6 |
j1f(x) | 9 for |x| < 8 otherwise, the maximum absolute error is 2.2 x 10-6 |
jnf(x) | For n = 128, the maximum absolute error is 2.2 x 10-6 |
y0f(x) | 9 for |x| < 8 otherwise, the maximum absolute error is 2.2 x 10-6 |
y1f(x) | 9 for |x| < 8 otherwise, the maximum absolute error is 2.2 x 10-6 |
ynf(x) | ceil(2 + 2.5n) for |x| < n otherwise, the maximum absolute error is 2.2 x 10-6 |
cyl_bessel_i0f(x) | 6 (full range) |
cyl_bessel_i1f(x) | 6 (full range) |
fmodf(x,y) | 0 (full range) |
remainderf(x,y) | 0 (full range) |
remquof(x,y,iptr) | 0 (full range) |
modff(x,iptr) | 0 (full range) |
fdimf(x,y) | 0 (full range) |
truncf(x) | 0 (full range) |
roundf(x) | 0 (full range) |
rintf(x) | 0 (full range) |
nearbyintf(x) | 0 (full range) |
ceilf(x) | 0 (full range) |
floorf(x) | 0 (full range) |
lrintf(x) | 0 (full range) |
lroundf(x) | 0 (full range) |
llrintf(x) | 0 (full range) |
llroundf(x) | 0 (full range) |
Double-Precision Floating-Point Functions
The recommended way to round a double-precision floating-point operand to an integer, with the result being a double-precision floating-point number is rint(), not round(). The reason is that round() maps to an 8-instruction sequence on the device, whereas rint() maps to a single instruction. trunc(), ceil(), and floor() each map to a single instruction as well.
Function | Maximum ulp error |
---|---|
x+y | 0 (IEEE-754 round-to-nearest-even) |
x*y | 0 (IEEE-754 round-to-nearest-even) |
x/y | 0 (IEEE-754 round-to-nearest-even) |
1/x | 0 (IEEE-754 round-to-nearest-even) |
sqrt(x) | 0 (IEEE-754 round-to-nearest-even) |
rsqrt(x) | 1 (full range) |
cbrt(x) | 1 (full range) |
rcbrt(x) | 1 (full range) |
hypot(x,y) | 2 (full range) |
rhypot(x,y) | 1 (full range) |
norm3d(x,y,z) | 2 (full range) |
rnorm3d(x,y,z) | 1 (full range) |
norm4d(x,y,z,t) | 2 (full range) |
rnorm4d(x,y,z,t) | 1 (full range) |
norm(dim,arr) | 3 (full range) |
rnorm(dim,arr) | 2 (full range) |
exp(x) | 1 (full range) |
exp2(x) | 1 (full range) |
exp10(x) | 1 (full range) |
expm1(x) | 1 (full range) |
log(x) | 1 (full range) |
log2(x) | 1 (full range) |
log10(x) | 1 (full range) |
log1p(x) | 1 (full range) |
sin(x) | 1 (full range) |
cos(x) | 1 (full range) |
tan(x) | 2 (full range) |
sincos(x,sptr,cptr) | 1 (full range) |
sinpi(x) | 1 (full range) |
cospi(x) | 1 (full range) |
sincospi(x,sptr,cptr) | 1 (full range) |
asin(x) | 2 (full range) |
acos(x) | 1 (full range) |
atan(x) | 2 (full range) |
atan2(y,x) | 2 (full range) |
sinh(x) | 1 (full range) |
cosh(x) | 1 (full range) |
tanh(x) | 1 (full range) |
asinh(x) | 2 (full range) |
acosh(x) | 2 (full range) |
atanh(x) | 2 (full range) |
pow(x,y) | 2 (full range) |
erf(x) | 2 (full range) |
erfc(x) | 4 (full range) |
erfinv(x) | 5 (full range) |
erfcinv(x) | 6 (full range) |
erfcx(x) | 3 (full range) |
normcdf(x) | 5 (full range) |
normcdfinv(x) | 7 (full range) |
lgamma(x) | 4 (outside interval -11.0001 ... -2.2637; larger inside) |
tgamma(x) | 8 (full range) |
fma(x,y,z) | 0 (IEEE-754 round-to-nearest-even) |
frexp(x,exp) | 0 (full range) |
ldexp(x,exp) | 0 (full range) |
scalbn(x,n) | 0 (full range) |
scalbln(x,l) | 0 (full range) |
logb(x) | 0 (full range) |
ilogb(x) | 0 (full range) |
j0(x) | 7 for |x| < 8 otherwise, the maximum absolute error is 5 x 10-12 |
j1(x) | 7 for |x| < 8 otherwise, the maximum absolute error is 5 x 10-12 |
jn(x) | For n = 128, the maximum absolute error is 5 x 10-12 |
y0(x) | 7 for |x| < 8 otherwise, the maximum absolute error is 5 x 10-12 |
y1(x) | 7 for |x| < 8 otherwise, the maximum absolute error is 5 x 10-12 |
yn(x) | For |x| > 1.5n, the maximum absolute error is 5 x 10-12 |
cyl_bessel_i0(x) | 6 (full range) |
cyl_bessel_i1(x) | 6 (full range) |
fmod(x,y) | 0 (full range) |
remainder(x,y) | 0 (full range) |
remquo(x,y,iptr) | 0 (full range) |
mod(x,iptr) | 0 (full range) |
fdim(x,y) | 0 (full range) |
trunc(x) | 0 (full range) |
round(x) | 0 (full range) |
rint(x) | 0 (full range) |
nearbyint(x) | 0 (full range) |
ceil(x) | 0 (full range) |
floor(x) | 0 (full range) |
lrint(x) | 0 (full range) |
lround(x) | 0 (full range) |
llrint(x) | 0 (full range) |
llround(x) | 0 (full range) |
D.2. Intrinsic Functions
The functions from this section can only be used in device code.
Among these functions are the less accurate, but faster versions of some of the functions of Standard Functions .They have the same name prefixed with __ (such as __sinf(x)). They are faster as they map to fewer native instructions. The compiler has an option (-use_fast_math) that forces each function in Table 8 to compile to its intrinsic counterpart. In addition to reducing the accuracy of the affected functions, it may also cause some differences in special case handling. A more robust approach is to selectively replace mathematical function calls by calls to intrinsic functions only where it is merited by the performance gains and where changed properties such as reduced accuracy and different special case handling can be tolerated.
Operator/Function | Device Function |
---|---|
x/y | __fdividef(x,y) |
sinf(x) | __sinf(x) |
cosf(x) | __cosf(x) |
tanf(x) | __tanf(x) |
sincosf(x,sptr,cptr) | __sincosf(x,sptr,cptr) |
logf(x) | __logf(x) |
log2f(x) | __log2f(x) |
log10f(x) | __log10f(x) |
expf(x) | __expf(x) |
exp10f(x) | __exp10f(x) |
powf(x,y) | __powf(x,y) |
Functions suffixed with _rn operate using the round to nearest even rounding mode.
Functions suffixed with _rz operate using the round towards zero rounding mode.
Functions suffixed with _ru operate using the round up (to positive infinity) rounding mode.
Functions suffixed with _rd operate using the round down (to negative infinity) rounding mode.
Single-Precision Floating-Point Functions
__fadd_[rn,rz,ru,rd]() and __fmul_[rn,rz,ru,rd]() map to addition and multiplication operations that the compiler never merges into FMADs. By contrast, additions and multiplications generated from the '*' and '+' operators will frequently be combined into FMADs.
The accuracy of floating-point division varies depending on whether the code is compiled with -prec-div=false or -prec-div=true. When the code is compiled with -prec-div=false, both the regular division / operator and __fdividef(x,y) have the same accuracy, but for 2126 < y < 2128, __fdividef(x,y) delivers a result of zero, whereas the / operator delivers the correct result to within the accuracy stated in Table 9. Also, for 2126 < y < 2128, if x is infinity, __fdividef(x,y) delivers a NaN (as a result of multiplying infinity by zero), while the / operator returns infinity. On the other hand, the / operator is IEEE-compliant when the code is compiled with -prec-div=true or without any -prec-div option at all since its default value is true.
Function | Error bounds |
---|---|
__fadd_[rn,rz,ru,rd](x,y) | IEEE-compliant. |
__fsub_[rn,rz,ru,rd](x,y) | IEEE-compliant. |
__fmul_[rn,rz,ru,rd](x,y) | IEEE-compliant. |
__fmaf_[rn,rz,ru,rd](x,y,z) | IEEE-compliant. |
__frcp_[rn,rz,ru,rd](x) | IEEE-compliant. |
__fsqrt_[rn,rz,ru,rd](x) | IEEE-compliant. |
__frsqrt_rn(x) | IEEE-compliant. |
__fdiv_[rn,rz,ru,rd](x,y) | IEEE-compliant. |
__fdividef(x,y) | For y in [2-126, 2126], the maximum ulp error is 2. |
__expf(x) | The maximum ulp error is 2 + floor(abs(1.16 * x)). |
__exp10f(x) | The maximum ulp error is 2+ floor(abs(2.95 * x)). |
__logf(x) | For x in [0.5, 2], the maximum absolute error is 2-21.41, otherwise, the maximum ulp error is 3. |
__log2f(x) | For x in [0.5, 2], the maximum absolute error is 2-22, otherwise, the maximum ulp error is 2. |
__log10f(x) | For x in [0.5, 2], the maximum absolute error is 2-24, otherwise, the maximum ulp error is 3. |
__sinf(x) | For x in [-π,π], the maximum absolute error is 2-21.41, and larger otherwise. |
__cosf(x) | For x in [-π,π], the maximum absolute error is 2-21.19, and larger otherwise. |
__sincosf(x,sptr,cptr) | Same as __sinf(x) and __cosf(x). |
__tanf(x) | Derived from its implementation as __sinf(x) * (1/__cosf(x)). |
__powf(x, y) | Derived from its implementation as exp2f(y * __log2f(x)). |
Double-Precision Floating-Point Functions
__dadd_rn() and __dmul_rn() map to addition and multiplication operations that the compiler never merges into FMADs. By contrast, additions and multiplications generated from the '*' and '+' operators will frequently be combined into FMADs.
Function | Error bounds |
---|---|
__dadd_[rn,rz,ru,rd](x,y) | IEEE-compliant. |
__dsub_[rn,rz,ru,rd](x,y) | IEEE-compliant. |
__dmul_[rn,rz,ru,rd](x,y) | IEEE-compliant. |
__fma_[rn,rz,ru,rd](x,y,z) | IEEE-compliant. |
__ddiv_[rn,rz,ru,rd](x,y)(x,y) | IEEE-compliant. Requires compute capability > 2. |
__drcp_[rn,rz,ru,rd](x) | IEEE-compliant. Requires compute capability > 2. |
__dsqrt_[rn,rz,ru,rd](x) | IEEE-compliant. Requires compute capability > 2. |
E. C/C++ Language Support
As described in Compilation with NVCC, CUDA source files compiled with nvcc can include a mix of host code and device code. The CUDA frontend compiler aims to emulate the host compiler behavior with respect to C++ input code. The input source code is processed according to the C++ ISO/IEC 14882:2003 or C++ ISO/IEC 14882:2011 specifications, and the CUDA frontend compiler aims to emulate any host compiler divergences from the ISO specification. In addition, the supported language is extended with CUDA-specific constructs described in this document 7, and is subject to the restrictions described below.
C++11 Language Features provides a support matrix for the C++11 features. Restrictions lists the language restrictions. Polymorphic Function Wrappers and Experimental Feature: Device Lambdas describe additional features. Code Samples gives code samples.
E.1. C++11 Language Features
The following table lists new language features that have been accepted into the C++11 standard. The "Proposal" column provides a link to the ISO C++ committee proposal that describes the feature, while the "Available in nvcc (device code)" column indicates the first version of nvcc that contains an implementation of this feature (if it has been implemented) for device code.
Language Feature | C++11 Proposal | Available in nvcc (device code) |
---|---|---|
Rvalue references | N2118 | 7.0 |
Rvalue references for *this | N2439 | 7.0 |
Initialization of class objects by rvalues | N1610 | 7.0 |
Non-static data member initializers | N2756 | 7.0 |
Variadic templates | N2242 | 7.0 |
Extending variadic template template parameters | N2555 | 7.0 |
Initializer lists | N2672 | 7.0 |
Static assertions | N1720 | 7.0 |
auto-typed variables | N1984 | 7.0 |
Multi-declarator auto | N1737 | 7.0 |
Removal of auto as a storage-class specifier | N2546 | 7.0 |
New function declarator syntax | N2541 | 7.0 |
Lambda expressions | N2927 | 7.0 |
Declared type of an expression | N2343 | 7.0 |
Incomplete return types | N3276 | 7.0 |
Right angle brackets | N1757 | 7.0 |
Default template arguments for function templates | DR226 | 7.0 |
Solving the SFINAE problem for expressions | DR339 | 7.0 |
Alias templates | N2258 | 7.0 |
Extern templates | N1987 | 7.0 |
Null pointer constant | N2431 | 7.0 |
Strongly-typed enums | N2347 | 7.0 |
Forward declarations for enums | N2764 DR1206 | 7.0 |
Standardized attribute syntax | N2761 | 7.0 |
Generalized constant expressions | N2235 | 7.0 |
Alignment support | N2341 | 7.0 |
Conditionally-support behavior | N1627 | 7.0 |
Changing undefined behavior into diagnosable errors | N1727 | 7.0 |
Delegating constructors | N1986 | 7.0 |
Inheriting constructors | N2540 | 7.0 |
Explicit conversion operators | N2437 | 7.0 |
New character types | N2249 | 7.0 |
Unicode string literals | N2442 | 7.0 |
Raw string literals | N2442 | 7.0 |
Universal character names in literals | N2170 | 7.0 |
User-defined literals | N2765 | 7.0 |
Standard Layout Types | N2342 | 7.0 |
Defaulted functions | N2346 | 7.0 |
Deleted functions | N2346 | 7.0 |
Extended friend declarations | N1791 | 7.0 |
Extending sizeof | N2253 DR850 | 7.0 |
Inline namespaces | N2535 | 7.0 |
Unrestricted unions | N2544 | 7.0 |
Local and unnamed types as template arguments | N2657 | 7.0 |
Range-based for | N2930 | 7.0 |
Explicit virtual overrides | N2928 N3206 N3272 | 7.0 |
Minimal support for garbage collection and reachability-based leak detection | N2670 | N/A (see Restrictions) |
Allowing move constructors to throw [noexcept] | N3050 | 7.0 |
Defining move special member functions | N3053 | 7.0 |
Concurrency | ||
Sequence points | N2239 | |
Atomic operations | N2427 | |
Strong Compare and Exchange | N2748 | |
Bidirectional Fences | N2752 | |
Memory model | N2429 | |
Data-dependency ordering: atomics and memory model | N2664 | |
Propagating exceptions | N2179 | |
Allow atomics use in signal handlers | N2547 | |
Thread-local storage | N2659 | |
Dynamic initialization and destruction with concurrency | N2660 | |
C99 Features in C++11 | ||
__func__ predefined identifier | N2340 | 7.0 |
C99 preprocessor | N1653 | 7.0 |
long long | N1811 | 7.0 |
Extended integral types | N1988 |
E.2. Restrictions
E.2.1. Host Compiler Extensions
The use of host compiler specific language extensions in device code is unsupported.
E.2.2. Preprocessor Symbols
E.2.2.1. __CUDA_ARCH__
- The type signature of the following entities shall not depend on whether __CUDA_ARCH__ is defined or not, or on a particular value of __CUDA_ARCH__:
- __global__ functions and function templates
- __device__ and __constant__ variables
- textures and surfaces
Example:
#if !defined(__CUDA_ARCH__) typedef int mytype; #else typedef double mytype; #endif __device__ mytype xxx; // error: xxx's type depends on __CUDA_ARCH__ __global__ void foo(mytype in, // error: foo's type depends on __CUDA_ARCH__ mytype *ptr) { *ptr = in; }
- If a __global__ function template is instantiated and launched from the host, then the function template must be instantiated with the same template arguments irrespective of whether __CUDA_ARCH__ is defined and regardless of the value of __CUDA_ARCH__.
Example:
__device__ int result; template <typename T> __global__ void kern(T in) { result = in; } __host__ __device__ void foo(void) { #if !defined(__CUDA_ARCH__) kern<<<1,1>>>(1); // error: "kern<int>" instantiation only // when __CUDA_ARCH__ is undefined! #endif } int main(void) { foo(); cudaDeviceSynchronize(); return 0; }
- In separate compilation mode, the presence or absence of a definition of a function or variable with external linkage shall not depend on whether __CUDA_ARCH__ is defined or on a particular value of __CUDA_ARCH__8.
Example:
#if !defined(__CUDA_ARCH__) void foo(void) { } // error: The definition of foo() // is only present when __CUDA_ARCH__ // is undefined #endif
- In separate compilation, __CUDA_ARCH__ must not be used in headers such that different objects could contain different behavior. Or, it must be guaranteed that all objects will compile for the same compute_arch. If a weak function or template function is defined in a header and its behavior depends on __CUDA_ARCH__, then the instances of that function in the objects could conflict if the objects are compiled for different compute arch.
For example, if an a.h contains:
template<typename T> __device__ T* getptr(void) { #if __CUDA_ARCH__ == 200 return NULL; /* no address */ #else __shared__ T arr[256]; return arr; #endif }
Then if a.cu and b.cu both include a.h and instantiate getptr for the same type, and b.cu expects a non-NULL address, and compile with:
nvcc –arch=compute_20 –dc a.cu nvcc –arch=compute_30 –dc b.cu nvcc –arch=sm_30 a.o b.o
At link time only one version of the getptr is used, so the behavior would depend on which version is picked. To avoid this, either a.cu and b.cu must be compiled for the same compute arch, or __CUDA_ARCH__ should not be used in the shared header function.
The compiler does not guarantee that a diagnostic will be generated for the unsupported uses of __CUDA_ARCH__ described above.
E.2.3. Qualifiers
E.2.3.1. Device Memory Qualifiers
The __device__, __shared__ and __constant__ qualifiers are not allowed on:
- class, struct, and union data members,
- formal parameters,
- local variables within a function that executes on the host.
__shared__ and __constant__ variables have implied static storage.
__device__ and __constant__ variable definitions are only allowed in namespace scope (including global namespace scope).
__device__, __constant__ and __shared__ variables defined in namespace scope, that are of class type, cannot have a non-empty constructor or a non-empty destructor. A constructor for a class type is considered empty at a point in the translation unit, if it is either a trivial constructor or it satisfies all of the following conditions:
- The constructor function has been defined.
- The constructor function has no parameters, the initializer list is empty and the function body is an empty compound statement.
- Its class has no virtual functions and no virtual base classes.
- The default constructors of all base classes of its class can be considered empty.
- For all the nonstatic data members of its class that are of class type (or array thereof), the default constructors can be considered empty.
A destructor for a class is considered empty at a point in the translation unit, if it is either a trivial destructor or it satisfies all of the following conditions:
- The destructor function has been defined.
- The destructor function body is an empty compound statement.
- Its class has no virtual functions and no virtual base classes.
- The destructors of all base classes of its class can be considered empty.
- For all the nonstatic data members of its class that are of class type (or array thereof), the destructor can be considered empty.
When compiling in the whole program compilation mode (see the nvcc user manual for a description of this mode), __device__, __shared__, and __constant__ variables cannot be defined as external using the extern keyword. The only exception is for dynamically allocated __shared__ variables as described in __shared__.
When compiling in the separate compilation mode (see the nvcc user manual for a description of this mode), __device__, __shared__, and __constant__ variables can be defined as external using the extern keyword. nvlink will generate an error when it cannot find a definition for an external variable (unless it is a dynamically allocated __shared__ variable).
E.2.3.2. __managed__ Qualifier
Variables marked with the __managed__ qualifier ("managed" variables) have the following restrictions:
- The address of a managed variable is not a constant expression.
- A managed variable shall not have a const qualified type.
- A managed variable shall not have a reference type.
- The address or value of a managed variable shall not be used when the CUDA runtime may not be in a valid state, including the following cases:
- In static/dynamic initialization or destruction of an object with static or thread local storage duration.
- In code that executes after exit() has been called (e.g., a function marked with gcc's "__attribute__((destructor))").
- In code that executes when CUDA runtime may not be initialized (e.g., a function marked with gcc's "__attribute__((constructor))").
- A managed variable cannot be used as an unparenthesized id-expression argument to a decltype() expression.
- Managed variables have the same coherence and consistency behavior as specified for dynamically allocated managed memory.
- When a CUDA program containing managed variables is run on an execution platform with multiple GPUs, the variables are allocated only once, and not per GPU.
Here are examples of legal and illegal uses of managed variables:
__device__ __managed__ int xxx = 10; // OK int *ptr = &xxx; // error: use of managed variable // (xxx) in static initialization struct S1_t { int field; S1_t(void) : field(xxx) { }; }; struct S2_t { ~S2_t(void) { xxx = 10; } }; S1_t temp1; // error: use of managed variable // (xxx) in dynamic initialization S2_t temp2; // error: use of managed variable // (xxx) in the destructor of // object with static storage // duration __device__ __managed__ const int yyy = 10; // error: const qualified type __device__ __managed__ int &zzz = xxx; // error: reference type template <int *addr> struct S3_t { }; S3_t<&xxx> temp; // error: address of managed // variable(xxx) not a // constant expression __global__ void kern(int *ptr) { assert(ptr == &xxx); // OK xxx = 20; // OK } int main(void) { int *ptr = &xxx; // OK kern<<<1,1>>>(ptr); cudaDeviceSynchronize(); xxx++; // OK decltype(xxx) qqq; // error: managed variable(xxx) used // as unparenthized argument to // decltype decltype((xxx)) zzz = yyy; // OK }
E.2.3.3. Volatile Qualifier
The compiler is free to optimize reads and writes to global or shared memory (for example, by caching global reads into registers or L1 cache) as long as it respects the memory ordering semantics of memory fence functions (Memory Fence Functions) and memory visibility semantics of synchronization functions (Synchronization Functions).
These optimizations can be disabled using the volatile keyword: If a variable located in global or shared memory is declared as volatile, the compiler assumes that its value can be changed or used at any time by another thread and therefore any reference to this variable compiles to an actual memory read or write instruction.
E.2.4. Pointers
Dereferencing a pointer either to global or shared memory in code that is executed on the host, or to host memory in code that is executed on the device results in an undefined behavior, most often in a segmentation fault and application termination.
The address obtained by taking the address of a __device__, __shared__ or __constant__ variable can only be used in device code. The address of a __device__ or __constant__ variable obtained through cudaGetSymbolAddress() as described in Device Memory can only be used in host code.
As a consequence of the use of C++ syntax rules, void pointers (e.g., returned by malloc()) cannot be assigned to non-void pointers without a typecast.
E.2.5. Operators
E.2.5.1. Assignment Operator
__constant__ variables can only be assigned from the host code through runtime functions (Device Memory); they cannot be assigned from the device code.
__shared__ variables cannot have an initialization as part of their declaration.
It is not allowed to assign values to any of the built-in variables defined in Built-in Variables.
E.2.5.2. Address Operator
It is not allowed to take the address of any of the built-in variables defined in Built-in Variables.
E.2.6. Run Time Type Information (RTTI)
The following RTTI-related features are supported in host code, but not in device code.
- typeid operator
- std::type_info
- dynamic_cast operator
E.2.7. Exception Handling
Exception handling is only supported in host code, but not in device code.
E.2.8. Standard Library
Standard libraries are only supported in host code, but not in device code, unless specified otherwise.
E.2.9. Functions
E.2.9.1. External Linkage
A call within some device code of a function declared with the extern qualifier is only allowed if the function is defined within the same compilation unit as the device code, i.e., a single file or several files linked together with relocatable device code and nvlink.
E.2.9.2. Compiler generated functions
class Base { int x; public: __host__ __device__ Base(void) : x(10) {} }; class Derived : public Base { int y; }; class Other: public Base { int z; }; __device__ void foo(void) { Derived D1; Other D2; } __host__ void bar(void) { Other D3; }Here, the compiler generated constructor function "Derived::Derived" will be treated as a __device__ function, since it is invoked only from the __device__ function "foo". The compiler generated constructor function "Other::Other" will be treated as a __host__ __device__ function, since it is invoked both from a __device__ function "foo" and a __host__ function "bar".
E.2.9.3. Function Parameters
__global__ function parameters are passed to the device via constant memory and are limited to 4 KB.
__device__ and __global__ functions cannot have a variable number of arguments.
E.2.9.4. Static Variables within Function
Within the body of a __device__ or __global__ function, only __shared__ variables may be declared with static storage class.
E.2.9.5. Function Pointers
The address of a __global__ function taken in host code cannot be used in device code (e.g. to launch the kernel). Similarly, the address of a __global__ function taken in device code 9 cannot be used in host code.
It is not allowed to take the address of a __device__ function in host code.
E.2.10. Classes
E.2.10.1. Data Members
Static data members are not supported.
The layout of bit-fields in device code may currently not match the layout in host code on Windows.
E.2.10.3. Virtual Functions
When a function in a derived class overrides a virtual function in a base class, the execution space qualifiers (i.e., __host__, __device__) on the overridden and overriding functions must match.
It is not allowed to pass as an argument to a __global__ function an object of a class with virtual functions.
The virtual function table is placed in global or constant memory by the compiler.
E.2.10.4. Virtual Base Classes
It is not allowed to pass as an argument to a __global__ function an object of a class derived from virtual base classes.
E.2.10.5. Anonymous Unions
Member variables of a namespace scope anonymous union cannot be referenced in a __global__ or __device__ function.
E.2.10.6. Windows-Specific
The CUDA compiler follows the IA64 ABI for class layout, while the Microsoft host compiler does not. This may cause the CUDA compiler to compute the class layout and size differently than the Microsoft host compiler, for a class type 'T' that satisfies any of the following conditions or for any class type that has T as a field type or as a base class type (direct or indirect):
- T has virtual functions.
- T has a virtual base class.
- T has multiple inheritance with more than one direct or indirect empty base class.
- All direct and indirect base classes ('B') of T are empty and the type of the first field of T ('F') uses B in its definition, such that B is laid out at offset 0 in the definition of F.
As long as affected class types are used exclusively in host or device code, the program should work correctly; do not pass objects of such class types between between host and device code (e.g., as arguments to __global__ functions or through cudaMemcpy*() calls) 10.
E.2.11. Templates
- The type or template is defined within a __host__ or __host__ __device__.
- The type or template is a class member with private or protected access and its parent class is not defined within a __device__ or __global__ function.
Example:
template <typename T> __global__ void myKernel(void) { } class myClass { private: struct inner_t { }; public: static void launch(void) { // error: inner_t is used in template argument // but it is private myKernel<inner_t><<<1,1>>>(); } };
E.2.12. Trigraphs and Digraphs
Trigraphs are not supported on any platform. Digraphs are not supported on Windows.
E.2.13. Const-qualified variables
Let 'V' denote a namespace scope variable or a class static member variable that has const qualified type and does not have execution space annotations (e.g., __device__, __constant__, __shared__). V is considered to be a host code variable.
- V has been initialized with a constant expression before the point of use, and
- it has one of the following types:
- builtin floating point type except when the Microsoft compiler is used as the host compiler,
- builtin integral type.
Example:
const int xxx = 10; struct S1_t { static const int yyy = 20; }; extern const int zzz; const float www = 5.0; __device__ void foo(void) { int local1[xxx]; // OK int local2[S1_t::yyy]; // OK int val1 = xxx; // OK int val2 = S1_t::yyy; // OK int val3 = zzz; // error: zzz not initialized with constant // expression at the point of use. const int &val3 = xxx; // error: reference to host variable const int *val4 = &xxx; // error: address of host variable const float val5 = www; // OK except when the Microsoft compiler is used as // the host compiler. } const int zzz = 20;
E.2.14. C++11 Features
C++11 features that are enabled by default by the host compiler are also supported by nvcc, subject to the restrictions described in this document. In addition, invoking nvcc with -std=c++11 flag turns on all C++11 features and also invokes the host preprocessor, compiler and linker with the corresponding C++11 dialect option 11.
E.2.14.1. Lambda Expressions
The execution space qualifiers for all member functions12 of the closure class associated with a lambda expression are derived by the compiler as follows. As described in the C++11 standard, the compiler creates a closure type in the smallest block scope, class scope or namespace scope that contains the lambda expression. The innermost function scope enclosing the closure type is computed, and the corresponding function's execution space qualifiers are assigned to the closure class member functions. If there is no enclosing function scope, the execution space qualifier is __host__.
Examples of lambda expressions and computed execution space qualifiers are shown below (in comments).
auto globalVar = [] { return 0; }; // __host__ void f1(void) { auto l1 = [] { return 1; }; // __host__ } __device__ void f2(void) { auto l2 = [] { return 2; }; // __device__ } __host__ __device__ void f3(void) { auto l3 = [] { return 3; }; // __host__ __device__ } __device__ void f4(int (*fp)() = [] { return 4; } /* __host__ */) { } __global__ void f5(void) { auto l5 = [] { return 5; }; // __device__ } __device__ void f6(void) { struct S1_t { static void helper(int (*fp)() = [] {return 6; } /* __device__ */) { } }; }
The closure type of a lambda expression cannot be used in the type or non-type argument of a __global__ function template instantiation, unless the lambda is defined within a __device__ or __global__ function.
Example:
template <typename T> __global__ void foo(T in) { }; template <typename T> struct S1_t { }; void bar(void) { auto temp1 = [] { }; foo<<<1,1>>>(temp1); // error: lambda closure type used in // template type argument foo<<<1,1>>>( S1_t<decltype(temp1)>()); // error: lambda closure type used in // template type argument }
E.2.14.2. std::initializer_list
By default, the CUDA compiler will implicitly consider the member functions of std::initializer_list to have __host__ __device__ execution space qualifiers, and therefore they can be invoked directly from device code. The nvcc flag --no-host-device-initializer-list will disable this behavior; member functions of std::initializer_list will then be considered as __host__ functions and will not be directly invokable from device code.
Example:
#include <initializer_list> __device__ int foo(std::initializer_list<int> in); __device__ void bar(void) { foo({4,5,6}); // (a) initializer list containing only // constant expressions. int i = 4; foo({i,5,6}); // (b) initializer list with at least one // non-constant element. // This form may have better performance than (a). }
E.2.14.3. Rvalue references
By default, the CUDA compiler will implicitly consider std::move and std::forward function templates to have __host__ __device__ execution space qualifiers, and therefore they can be invoked directly from device code. The nvcc flag --no-host-device-move-forward will disable this behavior; std::move and std::forward will then be considered as __host__ functions and will not be directly invokable from device code.
E.2.14.4. Constexpr functions and function templates
By default, a constexpr function cannot be called from a function with incompatible execution space 13. The experimental nvcc flag --relaxed-constexpr removes this restriction. When this flag is specified, host code can invoke a __device__ constexpr function and device code can invoke a __host__ constexpr function. Note that a function template instantiation may not be a constexpr function even if the corresponding template is marked with the keyword constexpr (C++11 Standard Section [dcl.constexpr.p6]).
E.2.14.5. Constexpr variables
Let 'V' denote a namespace scope variable or a class static member variable that has been marked constexpr and that does not have execution space annotations (e.g., __device__, __constant__, __shared__). V is considered to be a host code variable.
If V is of scalar type 14 other than long double, the value of V can be directly used in device code. In addition, the value of V can be used inside a constexpr __device__ or __host__ __device__ function, if the call to the function is a constant expression 15. Device source code cannot contain a reference to V or take the address of V.
Example:
constexpr int xxx = 10; constexpr int yyy = xxx + 4; struct S1_t { static constexpr int qqq = 100; }; constexpr int host_arr[] = { 1, 2, 3}; constexpr __device__ int get(int idx) { return host_arr[idx]; } __device__ int foo(int idx) { int v1 = xxx + yyy + S1_t::qqq; // OK const int &v2 = xxx; // error: reference to host constexpr // variable const int *v3 = &xxx; // error: address of host constexpr // variable const int &v4 = S1_t::qqq; // error: reference to host constexpr // variable const int *v5 = &S1_t::qqq; // error: address of host constexpr // variable v1 += get(2); // OK: 'get(2)' is a constant // expression. v1 += get(idx); // error: 'get(idx)' is not a constant // expression v1 += host_arr[2]; // error: 'host_arr' does not have // scalar type. return v1; }
E.2.14.6. Inline namespaces
- __global__ function or function template instantiation
- __device__, __constant__
- variables with surface or texture type
This limitation can be avoided by using unique names for such entities defined within an inline namespace.
Example:
__device__ int Gvar; inline namespace N1 { __device__ int Gvar; } // <-- CUDA compiler inserts a reference to "Gvar" at this point in the // translation unit. This reference will be considered ambiguous by the // host compiler and compilation will fail. }
Example:
inline namespace N1 { namespace N2 { __device__ int Gvar; } } namespace N2 { __device__ int Gvar; } // <-- CUDA compiler inserts reference to "::N2::Gvar" at this point in // the translation unit. This reference will be considered ambiguous by // the host compiler and compilation will fail. }
E.2.14.6.1. Inline unnamed namespaces
- __device__, __shared__ and __constant__ variables
- __global__ function and function templates
- variables with surface or texture type
Example:
inline namespace { namespace N2 { template <typename T> __global__ void foo(void); // error __global__ void bar(void) { } // error template <> __global__ void foo<int>(void) { } // error __device__ int x1b; // error __constant__ int x2b; // error __shared__ int x3b; // error texture<int> q2; // error surface<int> s2; // error } };
E.2.14.8. __global__ functions and function templates
A __global__ function or function template cannot be declared as constexpr and cannot have trailing return type.
- rvalue reference type
- std::initializer_list
- restrict qualified reference type
- Only a single pack parameter is allowed.
- The pack parameter must be listed last in the template parameter list.
Example:
// ok template <template <typename...> class Wrapper, typename... Pack> __global__ void foo1(Wrapper<Pack...>); // error: pack parameter is not last in parameter list template <typename... Pack, template <typename...> class Wrapper> __global__ void foo2(Wrapper<Pack...>); // error: multiple parameter packs template <typename... Pack1, int...Pack2, template<typename...> class Wrapper1, template<int...> class Wrapper2> __global__ void foo3(Wrapper1<Pack1...>, Wrapper2<Pack2...>);
E.2.14.9. __device__/__constant__/__shared__ variables
__device__, __constant__ and __shared__ variables cannot be marked with the keyword constexpr and cannot have rvalue reference type.
E.3. Polymorphic Function Wrappers
A polymorphic function wrapper class template nvstd::function is provided in the nvfunctional header. Instances of this class template can be used to store, copy and invoke any callable target, e.g., lambda expressions. The operator() for instances of nvstd::function is a __device__ function, and can therefore be invoked only from device code.
Example:
#include <nvfunctional> __device__ void foo() { } __global__ void k() { /* Assign address of __device__ function */ nvstd::function<void()> fn1 = foo; fn1(); /* invoke */ auto lambda = [](int) { return 10.1f; }; /* Assign lambda closure object */ nvstd::function<float (int)> fn2 = lambda; fn2(10); /* invoke */ } __host__ void bar1(nvstd::function<void()> in) { in(); /* error: invoking device function from host code */ } __host__ __device__ void bar2(nvstd::function<void()> in) { in(); /* error: invoking device function from host code */ #ifdef __CUDA_ARCH__ in(); /* ok */ #endif /* __CUDA_ARCH__ */ }
nvstd::function is defined in the nvfunctional header as follows:
namespace nvstd { template <class _RetType, class ..._ArgTypes> class function<_RetType(_ArgTypes...)> { public: // constructors __device__ __host__ function() noexcept; __device__ __host__ function(nullptr_t) noexcept; __device__ __host__ function(const function &); __device__ __host__ function(function &&); template<class _F> __device__ __host__ function(_F); // destructor __device__ __host__ ~function(); // assignment operators __device__ __host__ function& operator=(const function&); __device__ __host__ function& operator=(function&&); __device__ __host__ function& operator=(nullptr_t); __device__ __host__ function& operator=(_F&&); // swap __device__ __host__ void swap(function&) noexcept; // function capacity __device__ __host__ explicit operator bool() const noexcept; // function invocation __device__ _RetType operator()(_ArgTypes...) const; }; // null pointer comparisons template <class _R, class... _ArgTypes> __device__ __host__ bool operator==(const function<_R(_ArgTypes...)>&, nullptr_t) noexcept; template <class _R, class... _ArgTypes> __device__ __host__ bool operator==(nullptr_t, const function<_R(_ArgTypes...)>&) noexcept; template <class _R, class... _ArgTypes> __device__ __host__ bool operator!=(const function<_R(_ArgTypes...)>&, nullptr_t) noexcept; template <class _R, class... _ArgTypes> __device__ __host__ bool operator!=(nullptr_t, const function<_R(_ArgTypes...)>&) noexcept; // specialized algorithms template <class _R, class... _ArgTypes> __device__ __host__ void swap(function<_R(_ArgTypes...)>&, function<_R(_ArgTypes...)>&); }
E.4. Experimental Feature: Device Lambdas
The nvcc flag '--expt-extended-lambda' allows explicit execution space annotations in a lambda expression. The execution space annotations should be present after the 'lambda-introducer' and before the optional 'lambda-declarator'.
Example:
void foo(void) { // a '__device__' lambda auto lam1 = [] __device__ { return 10; }; // a '__host__ __device__' lambda auto lam2 = [] __host__ __device__ { return 20; }; // a '__host__' lambda auto lam3 = [] __host__ { return 30; }; }
If the execution space annotations are not explicitly specified, they are computed based on the scopes enclosing the closure class associated with the lambda, as described in the section on C++11 support. The execution space annotations are applied to all methods of the closure class associated with the lambda.
In the rest of this section, a '__device__ lambda' indicates a lambda explicitly annotated with the '__device__' annotation. A __device__ lambda defined within a host function may be used to instantiate a __global__ function template, subject to the restrictions described in this document.
Example:
__device__ int result; template <typename T> __global__ void kernel(T in) { result = in(4); } void foo(void) { int x = 30; kernel<<<1,1>>>( [=] __device__ (int in) { return in * x; // x captured by value } ); }
E.4.1. Restrictions
For a __device__ lambda defined within a host function, the CUDA compiler will replace it with a placeholder type defined in namespace scope, before invoking the host compiler. The CUDA compiler will synthesize expressions involving the address of the enclosing function. This is required for the correct execution of any __global__ function template whose template argument involves a __device__ lambda. This transformation requires certain restrictions on __device__ lambdas, described below.
- A __device__ lambda must be defined directly within the block scope of a function definition ('enclosing function'), or within a nested block scope. The enclosing function must be marked either with __host__ or __host__ __device__ annotation, or it should have no explicit execution space annotation (in which case, it is equivalent to having an implicit __host__ annotation). The enclosing function must be named and its address can be taken. If the enclosing function is a class member, then the following conditions must be satisfied:
- All classes enclosing the member function must have a name.
- The member function must not have private or protected access within its parent class.
- All enclosing classes must not have private or protected access within their respective parent classes.
Example:
// Error: defined outside function auto lam0 = [] __device__ { return 0; }; __device__ void other(void) { // Error: enclosing function is not a __host__ or __host__ __device__ // function auto lam = [=] __device__ { return 0; }; } void foo(void) { // OK auto lam1 = [] __device__ { return 0; }; { // OK auto lam2 = [] __device__ { return 0; }; } auto outer = [] { // Error: enclosing function (operator()) is a class member // of an unnamed class auto lam3 = [] __device__ { return 0; }; }; } auto outer = [] { // Error: enclosing function (operator()) is a class member // of an unnamed class auto lam3 = [] __device__ { return 0; }; }; struct S1_t { S1_t(void) { // Error: cannot take address of enclosing function auto lam4 = [] __device__ { return 0; }; } }; class C0_t { void foo(void) { // Error: enclosing function has private access in parent class auto temp1 = [] __device__ { return 10; }; } struct S2_t { void foo(void) { // Error: enclosing class S2_t has private access in its // parent class auto temp1 = [] __device__ { return 10; }; } }; };
- A __device__ lambda cannot be defined in a class that is local to a function.
Example:
void foo(void) { struct S1_t { void bar(void) { // Error: bar is member of a class that is local to a function. auto lam4 = [] __device__ { return 0; }; } }; }
- If the enclosing function is an instantiation of a function template or a member function template, and/or the function is a member of a class template, the template(s) must satisfy the following constraints:
- The template must have at most one variadic parameter, and it must be listed last in the template parameter list.
- The template parameters must be named.
- The template instantiation argument types cannot involve types that are either local to a function (except for closure types for __device__ lambdas), or are private or protected class members.
Example:
template <typename T> __global__ void kern(T in) { in(); } template <typename... T> struct foo {}; template < template <typename...> class T, typename... P1, typename... P2> void bar1(const T<P1...>, const T<P2...>) { // Error: enclosing function has multiple parameter packs auto lam1 = [] __device__ { return 10; }; } template < template <typename...> class T, typename... P1, typename T2> void bar2(const T<P1...>, T2) { // Error: for enclosing function, the // parameter pack is not last in the template parameter list. auto lam1 = [] __device__ { return 10; }; } template <typename T, T> void bar3(void) { // Error: for enclosing function, the second template // parameter is not named. auto lam1 = [] __device__ { return 10; }; } int main() { foo<char, int, float> f1; foo<char, int> f2; bar1(f1, f2); bar2(f1, 10); bar3<int, 10>(); }
Example:
template <typename T> __global__ void kern(T in) { in(); } template <typename T> void bar4(void) { auto lam1 = [] __device__ { return 10; }; kern<<<1,1>>>(lam1); } struct C1_t { struct S1_t { }; friend int main(void); }; int main() { struct S1_t { }; // Error: enclosing function for device lambda in bar4 // is instantiated with a type local to main. bar4<S1_t>(); // Error: enclosing function for device lambda in bar4 // is instantiated with a type that is a private member // of a class. bar4<C1_t::S1_t>(); }
- With Visual Studio 2013 host compiler, the function enclosing a __device__ lambda definition must have external linkage. The restriction is present because this host compiler does not support using the address of non-extern linkage functions as template arguments, which is needed by the CUDA compiler transformations to support __device__ lambdas.
- A __device__ lambda has the following restrictions on captured variables:
- Variables can only be captured by value.
- The number of captured variables must be less than 31.
- Variables of array type cannot be captured.
- A function parameter that is an element of a variadic argument pack cannot be captured.
- The type of the captured variable cannot involve types that are either local to a function (except for closure types for __device__ lambdas), or are private or protected class members.
- When parsing a function, the CUDA compiler assigns a counter value to each __device__ lambda within that function. This counter value is used in the substituted named type passed to the host compiler. Hence, whether or not a __device__ lambda is defined within a function should not depend on a particular value of __CUDA_ARCH__, or on __CUDA_ARCH__ being undefined.
Example
template <typename T> __global__ void kernel(T in) { in(); } __host__ __device__ void foo(void) { // Error: the number and relative declaration // order of __device__ lambdas depends on // __CUDA_ARCH__ #if defined(__CUDA_ARCH__) auto lam1 = [] __device__ { return 0; }; #endif auto lam2 = [] __device__ { return 4; }; kernel<<<1,1>>>(lam2); }
- As described above, the CUDA compiler replaces a __device__ lambda defined in a host function with a placeholder type defined in namespace scope. This placeholder type does not define a operator() function equivalent to the original lambda declaration. An attempt to determine the return type or parameter types of the operator() function may therefore work incorrectly in host code, as the code processed by the host compiler will be semantically different than the input code processed by the CUDA compiler. However, it is ok to introspect the return type or parameter types of the operator() function within device code.
Example
#include <type_traits> void foo(void) { auto lam1 = [] __device__ { return 10; }; // Error: attempt to extract the return type // of a __device__ lambda in host code std::result_of<decltype(lam1)()>::type xx = 1; }
The CUDA compiler will generate compiler diagnostics for a subset of cases described in 1-5; no diagnostic will be generated for cases 6-7, but the host compiler may fail to compile the generated code.
E.4.2. Additional Notes
A __device__ lambda defined inside a non-static class member function is allowed to capture the 'this' pointer. The 'this' pointer may be implicitly captured by value if any class member variables are captured in the lambda expression. If the 'this' pointer is captured, and is dereferenced during GPU execution, the memory pointed to by the 'this' pointer must be accessible on the GPU, otherwise the program may encounter an illegal memory access during GPU execution. For example, the object can be created in CUDA Unified Memory that is accessible on both the CPU and the GPU, e.g., using 'placement new' on a buffer allocated with 'cudaMallocManaged'.
E.5. Code Samples
E.5.1. Data Aggregation Class
class PixelRGBA { public: __device__ PixelRGBA(): r_(0), g_(0), b_(0), a_(0) { } __device__ PixelRGBA(unsigned char r, unsigned char g, unsigned char b, unsigned char a = 255): r_(r), g_(g), b_(b), a_(a) { } private: unsigned char r_, g_, b_, a_; friend PixelRGBA operator+(const PixelRGBA const PixelRGBA&); }; __device__ PixelRGBA operator+(const PixelRGBA& p1, const PixelRGBA& p2) { return PixelRGBA(p1.r_ + p2.r_, p1.g_ + p2.g_, p1.b_ + p2.b_, p1.a_ + p2.a_); } __device__ void func(void) { PixelRGBA p1, p2; // ... // Initialization of p1 and p2 here PixelRGBA p3 = p1 + p2; }
E.5.2. Derived Class
__device__ void* operator new(size_t bytes, MemoryPool& p); __device__ void operator delete(void*, MemoryPool& p); class Shape { public: __device__ Shape(void) { } __device__ void putThis(PrintBuffer *p) const; __device__ virtual void Draw(PrintBuffer *p) const { p->put("Shapeless"); } __device__ virtual ~Shape() {} }; class Point : public Shape { public: __device__ Point() : x(0), y(0) {} __device__ Point(int ix, int iy) : x(ix), y(iy) { } __device__ void PutCoord(PrintBuffer *p) const; __device__ void Draw(PrintBuffer *p) const; __device__ ~Point() {} private: int x, y; }; __device__ Shape* GetPointObj(MemoryPool& pool) { Shape* shape = new(pool) Point(rand(-20,10), rand(-100,-20)); return shape; }
E.5.3. Class Template
template <class T> class myValues { T values[MAX_VALUES]; public: __device__ myValues(T clear) { ... } __device__ void setValue(int Idx, T value) { ... } __device__ void putToMemory(T* valueLocation) { ... } }; template <class T> void __global__ useValues(T* memoryBuffer) { myValues<T> myLocation(0); ... } __device__ void* buffer; int main() { ... useValues<int><<<blocks, threads>>>(buffer); ... }
E.5.4. Function Template
template <typename T> __device__ bool func(T x) { ... return (...); } template <> __device__ bool func<int>(T x) // Specialization { return true; } // Explicit argument specification bool result = func<double>(0.5); // Implicit argument deduction int x = 1; bool result = func(x);
E.5.5. Functor Class
class Add { public: __device__ float operator() (float a, float b) const { return a + b; } }; class Sub { public: __device__ float operator() (float a, float b) const { return a - b; } }; // Device code template<class O> __global__ void VectorOperation(const float * A, const float * B, float * C, unsigned int N, O op) { unsigned int iElement = blockDim.x * blockIdx.x + threadIdx.x; if (iElement < N) C[iElement] = op(A[iElement], B[iElement]); } // Host code int main() { ... VectorOperation<<<blocks, threads>>>(v1, v2, v3, N, Add()); ... }
F. Texture Fetching
This appendix gives the formula used to compute the value returned by the texture functions of Texture Functions depending on the various attributes of the texture reference (see Texture and Surface Memory).
The texture bound to the texture reference is represented as an array T of
- N texels for a one-dimensional texture,
- N x M texels for a two-dimensional texture,
- N x M x L texels for a three-dimensional texture.
It is fetched using non-normalized texture coordinates x, y, and z, or the normalized texture coordinates x/N, y/M, and z/L as described in Texture Memory. In this appendix, the coordinates are assumed to be in the valid range. Texture Memory explained how out-of-range coordinates are remapped to the valid range based on the addressing mode.
F.1. Nearest-Point Sampling
In this filtering mode, the value returned by the texture fetch is
- tex(x)=T[i] for a one-dimensional texture,
- tex(x,y)=T[i,j] for a two-dimensional texture,
- tex(x,y,z)=T[i,j,k] for a three-dimensional texture,
where i=floor(x), j=floor(y), and k=floor(z).
Figure 13 illustrates nearest-point sampling for a one-dimensional texture with N=4.
For integer textures, the value returned by the texture fetch can be optionally remapped to [0.0, 1.0] (see Texture Memory).
F.2. Linear Filtering
In this filtering mode, which is only available for floating-point textures, the value returned by the texture fetch is
- tex(x)=(1−α)T[i]+αT[i+1] for a one-dimensional texture,
- tex(x,y)=(1−α)(1−β)T[i,j]+α(1−β)T[i+1,j]+(1−α)βT[i,j+1]+αβT[i+1,j+1] for a two-dimensional texture,
-
tex(x,y,z) =
(1−α)(1−β)(1−γ)T[i,j,k]+α(1−β)(1−γ)T[i+1,j,k]+
(1−α)β(1−γ)T[i,j+1,k]+αβ(1−γ)T[i+1,j+1,k]+
(1−α)(1−β)γT[i,j,k+1]+α(1−β)γT[i+1,j,k+1]+
(1−α)βγT[i,j+1,k+1]+αβγT[i+1,j+1,k+1]
for a three-dimensional texture,
where:
- i=floor(xB), α=frac(xB), xB=x-0.5,
- j=floor(yB), β=frac(yB), yB=y-0.5,
- k=floor(zB), γ=frac(zB), zB= z-0.5,
α, β, and γ are stored in 9-bit fixed point format with 8 bits of fractional value (so 1.0 is exactly represented).
Figure 14 illustrates linear filtering of a one-dimensional texture with N=4.
F.3. Table Lookup
A table lookup TL(x) where x spans the interval [0,R] can be implemented as TL(x)=tex((N-1)/R)x+0.5) in order to ensure that TL(0)=T[0] and TL(R)=T[N-1].
Figure 15 illustrates the use of texture filtering to implement a table lookup with R=4 or R=1 from a one-dimensional texture with N=4.
G. Compute Capabilities
The general specifications and features of a compute device depend on its compute capability (see Compute Capability).
Table 12 gives the features and technical specifications associated to each compute capability.
Floating-Point Standard reviews the compliance with the IEEE floating-point standard.
Sections Compute Capability 2.x, Compute Capability 3.x, and Compute Capability 5.x give more details on the architecture of devices of compute capability 2.x, 3.x, and 5.x, respectively.
G.1. Features and Technical Specifications
Feature Support | Compute Capability | ||||
---|---|---|---|---|---|
(Unlisted features are supported for all compute capabilities) | 2.x | 3.0 | 3.2 | 3.5, 3.7, 5.0, 5.2 | 5.3 |
Atomic functions operating on 32-bit integer values in global memory (Atomic Functions) | Yes | ||||
atomicExch() operating on 32-bit floating point values in global memory (atomicExch()) | |||||
Atomic functions operating on 32-bit integer values in shared memory (Atomic Functions) | |||||
atomicExch() operating on 32-bit floating point values in shared memory (atomicExch()) | |||||
Atomic functions operating on 64-bit integer values in global memory (Atomic Functions) | |||||
Warp vote functions (Warp Vote Functions) | |||||
Double-precision floating-point numbers | |||||
Atomic functions operating on 64-bit integer values in shared memory (Atomic Functions) | |||||
Atomic addition operating on 32-bit floating point values in global and shared memory (atomicAdd()) | |||||
__ballot() (Warp Vote Functions) | |||||
__threadfence_system() (Memory Fence Functions) | |||||
__syncthreads_count(), __syncthreads_and(), __syncthreads_or() (Synchronization Functions) | |||||
Surface functions (Surface Functions) | |||||
3D grid of thread blocks | |||||
Unified Memory Programming | No | Yes | |||
Funnel shift (see reference manual) | No | Yes | |||
Dynamic Parallelism | No | Yes | |||
Half-precision floating-point operations: addition, subtraction, multiplication, comparison, warp shuffle functions, conversion | No | Yes |
Compute Capability | ||||||||
---|---|---|---|---|---|---|---|---|
Technical Specifications | 2.x | 3.0 | 3.2 | 3.5 | 3.7 | 5.0 | 5.2 | 5.3 |
Maximum number of resident grids per device (Concurrent Kernel Execution) | 16 | 4 | 32 | 16 | ||||
Maximum dimensionality of grid of thread blocks | 3 | |||||||
Maximum x-dimension of a grid of thread blocks | 65535 | 231-1 | ||||||
Maximum y- or z-dimension of a grid of thread blocks | 65535 | |||||||
Maximum dimensionality of thread block | 3 | |||||||
Maximum x- or y-dimension of a block | 1024 | |||||||
Maximum z-dimension of a block | 64 | |||||||
Maximum number of threads per block | 1024 | |||||||
Warp size | 32 | |||||||
Maximum number of resident blocks per multiprocessor | 8 | 16 | 32 | |||||
Maximum number of resident warps per multiprocessor | 48 | 64 | ||||||
Maximum number of resident threads per multiprocessor | 1536 | 2048 | ||||||
Number of 32-bit registers per multiprocessor | 32 K | 64 K | 128 K | 64 K | ||||
Maximum number of 32-bit registers per thread block | 32 K | 64 K | 32 K | |||||
Maximum number of 32-bit registers per thread | 63 | 255 | ||||||
Maximum amount of shared memory per multiprocessor | 48 KB | 112 KB | 64 KB | 96 KB | 64 KB | |||
Maximum amount of shared memory per thread block | 48 KB | |||||||
Number of shared memory banks | 32 | |||||||
Amount of local memory per thread | 512 KB | |||||||
Constant memory size | 64 KB | |||||||
Cache working set per multiprocessor for constant memory | 8 KB | 10 KB | ||||||
Cache working set per multiprocessor for texture memory | 12 KB | Between 12 KB and 48 KB | ||||||
Maximum width for a 1D texture reference bound to a CUDA array | 65536 | |||||||
Maximum width for a 1D texture reference bound to linear memory | 227 | |||||||
Maximum width and number of layers for a 1D layered texture reference | 16384 x 2048 | |||||||
Maximum width and height for a 2D texture reference bound to a CUDA array | 65536 x 65535 | |||||||
Maximum width and height for a 2D texture reference bound to linear memory | 65000 x 65000 | |||||||
Maximum width and height for a 2D texture reference bound to a CUDA array supporting texture gather | 16384 x 16384 | |||||||
Maximum width, height, and number of layers for a 2D layered texture reference | 16384 x 16384 x 2048 | |||||||
Maximum width, height, and depth for a 3D texture reference bound to a CUDA array | 2048 x 2048 x 2048 | 4096 x 4096 x 4096 | ||||||
Maximum width (and height) for a cubemap texture reference | 16384 | |||||||
Maximum width (and height) and number of layers for a cubemap layered texture reference | 16384 x 2046 | |||||||
Maximum number of textures that can be bound to a kernel | 128 | 256 | ||||||
Maximum width for a 1D surface reference bound to a CUDA array | 65536 | |||||||
Maximum width and number of layers for a 1D layered surface reference | 65536 x 2048 | |||||||
Maximum width and height for a 2D surface reference bound to a CUDA array | 65536 x 32768 | |||||||
Maximum width, height, and number of layers for a 2D layered surface reference | 65536 x 32768 x 2048 | |||||||
Maximum width, height, and depth for a 3D surface reference bound to a CUDA array | 65536 x 32768 x 2048 | |||||||
Maximum width (and height) for a cubemap surface reference bound to a CUDA array | 32768 | |||||||
Maximum width (and height) and number of layers for a cubemap layered surface reference | 32768 x 2046 | |||||||
Maximum number of surfaces that can be bound to a kernel | 8 | 16 | ||||||
Maximum number of instructions per kernel | 512 million |
G.2. Floating-Point Standard
All compute devices follow the IEEE 754-2008 standard for binary floating-point arithmetic with the following deviations:
- There is no dynamically configurable rounding mode; however, most of the operations support multiple IEEE rounding modes, exposed via device intrinsics;
- There is no mechanism for detecting that a floating-point exception has occurred and all operations behave as if the IEEE-754 exceptions are always masked, and deliver the masked response as defined by IEEE-754 if there is an exceptional event; for the same reason, while SNaN encodings are supported, they are not signaling and are handled as quiet;
- The result of a single-precision floating-point operation involving one or more input NaNs is the quiet NaN of bit pattern 0x7fffffff;
- Double-precision floating-point absolute value and negation are not compliant with IEEE-754 with respect to NaNs; these are passed through unchanged;
Code must be compiled with -ftz=false, -prec-div=true, and -prec-sqrt=true to ensure IEEE compliance (this is the default setting; see the nvcc user manual for description of these compilation flags).
Regardless of the setting of the compiler flag -ftz,
- Atomic single-precision floating-point adds on global memory always operate in flush-to-zero mode, i.e., behave equivalent to FADD.F32.FTZ.RN,
- Atomic single-precision floating-point adds on shared memory always operate with denormal support, i.e., behave equivalent to FADD.F32.RN.
In accordance to the IEEE-754R standard, if one of the input parameters to fminf(), fmin(), fmaxf(), or fmax() is NaN, but not the other, the result is the non-NaN parameter.
The conversion of a floating-point value to an integer value in the case where the floating-point value falls outside the range of the integer format is left undefined by IEEE-754. For compute devices, the behavior is to clamp to the end of the supported range. This is unlike the x86 architecture behavior.
The behavior of integer division by zero and integer overflow is left undefined by IEEE-754. For compute devices, there is no mechanism for detecting that such integer operation exceptions have occurred. Integer division by zero yields an unspecified, machine-specific value.
http://developer.nvidia.com/content/precision-performance-floating-point-and-ieee-754-compliance-nvidia-gpus includes more information on the floating point accuracy and compliance of NVIDIA GPUs.
G.3. Compute Capability 2.x
G.3.1. Architecture
For devices of compute capability 2.x, a multiprocessor consists of:
- For devices of compute capability 2.0:
- 32 CUDA cores for arithmetic operations (see Arithmetic Instructions for throughputs of arithmetic operations),
- 4 special function units for single-precision floating-point transcendental functions,
- For devices of compute capability 2.1:
- 48 CUDA cores for arithmetic operations (see Arithmetic Instructions for throughputs of arithmetic operations),
- 8 special function units for single-precision floating-point transcendental functions,
- 2 warp schedulers.
- One instruction for devices of compute capability 2.0,
- Two independent instructions for devices of compute capability 2.1,
A warp scheduler can issue an instruction to only half of the CUDA cores. To execute an instruction for all threads of a warp, a warp scheduler must therefore issue the instruction over two clock cycles for an integer or floating-point arithmetic instruction.
A multiprocessor also has a read-only constant cache that is shared by all functional units and speeds up reads from the constant memory space, which resides in device memory.
There is an L1 cache for each multiprocessor and an L2 cache shared by all multiprocessors, both of which are used to cache accesses to local or global memory, including temporary register spills. The cache behavior (e.g., whether reads are cached in both L1 and L2 or in L2 only) can be partially configured on a per-access basis using modifiers to the load or store instruction.
The same on-chip memory is used for both L1 and shared memory: It can be configured as 48 KB of shared memory and 16 KB of L1 cache or as 16 KB of shared memory and 48 KB of L1 cache, using cudaFuncSetCacheConfig()/cuFuncSetCacheConfig():
// Device code __global__ void MyKernel(int* foo, int* bar, int a) { ... } // Host code // Runtime API // cudaFuncCachePreferShared: shared memory is 48 KB // cudaFuncCachePreferL1: shared memory is 16 KB // cudaFuncCachePreferNone: no preference cudaFuncSetCacheConfig(MyKernel, cudaFuncCachePreferShared) // Or via a function pointer: void (*funcPtr)(int*, int*, int); funcPtr = MyKernel; cudaFuncSetCacheConfig(*funcPtr, cudaFuncCachePreferShared);
The default cache configuration is "prefer none," meaning "no preference." If a kernel is configured to have no preference, then it will default to the preference of the current thread/context, which is set using cudaDeviceSetCacheConfig()/cuCtxSetCacheConfig() (see the reference manual for details). If the current thread/context also has no preference (which is again the default setting), then whichever cache configuration was most recently used for any kernel will be the one that is used, unless a different cache configuration is required to launch the kernel (e.g., due to shared memory requirements). The initial configuration is 48 KB of shared memory and 16 KB of L1 cache.
Applications may query the L2 cache size by checking the l2CacheSize device property (see Device Enumeration). The maximum L2 cache size is 768 KB.
Multiprocessors are grouped into Graphics Processor Clusters (GPCs). A GPC includes four multiprocessors.
Each multiprocessor has a read-only texture cache to speed up reads from the texture memory space, which resides in device memory. It accesses the texture cache via a texture unit that implements the various addressing modes and data filtering mentioned in Texture and Surface Memory.
G.3.2. Global Memory
Global memory accesses are cached. Using the -dlcm compilation flag, they can be configured at compile time to be cached in both L1 and L2 (-Xptxas -dlcm=ca) (this is the default setting) or in L2 only (-Xptxas -dlcm=cg).
A cache line is 128 bytes and maps to a 128 byte aligned segment in device memory. Memory accesses that are cached in both L1 and L2 are serviced with 128-byte memory transactions whereas memory accesses that are cached in L2 only are serviced with 32-byte memory transactions. Caching in L2 only can therefore reduce over-fetch, for example, in the case of scattered memory accesses.
- Two memory requests, one for each half-warp, if the size is 8 bytes,
- Four memory requests, one for each quarter-warp, if the size is 16 bytes.
Each memory request is then broken down into cache line requests that are issued independently. A cache line request is serviced at the throughput of L1 or L2 cache in case of a cache hit, or at the throughput of device memory, otherwise.
Note that threads can access any words in any order, including the same words.
If a non-atomic instruction executed by a warp writes to the same location in global memory for more than one of the threads of the warp, only one thread performs a write and which thread does it is undefined.
Figure 16 shows some examples of global memory accesses and corresponding memory transactions.
G.3.4. Constant Memory
- pointing to global memory,
- read-only in the kernel (programmer can enforce this using the const keyword),
- not dependent on thread ID.
G.4. Compute Capability 3.x
G.4.1. Architecture
- 192 CUDA cores for arithmetic operations (see Arithmetic Instructions for throughputs of arithmetic operations),
- 32 special function units for single-precision floating-point transcendental functions,
- 4 warp schedulers.
When a multiprocessor is given warps to execute, it first distributes them among the four schedulers. Then, at every instruction issue time, each scheduler issues two independent instructions for one of its assigned warps that is ready to execute, if any.
A multiprocessor has a read-only constant cache that is shared by all functional units and speeds up reads from the constant memory space, which resides in device memory.
There is an L1 cache for each multiprocessor and an L2 cache shared by all multiprocessors. The L1 cache is used to cache accesses to local memory, including temporary register spills. The L2 cache is used to cache accesses to local and global memory. The cache behavior (e.g., whether reads are cached in both L1 and L2 or in L2 only) can be partially configured on a per-access basis using modifiers to the load or store instruction. Some devices of compute capability 3.5 and devices of compute capability 3.7 allow opt-in to caching of global memory in both L1 and L2 via compiler options.
The same on-chip memory is used for both L1 and shared memory: It can be configured as 48 KB of shared memory and 16 KB of L1 cache or as 16 KB of shared memory and 48 KB of L1 cache or as 32 KB of shared memory and 32 KB of L1 cache, using cudaFuncSetCacheConfig()/cuFuncSetCacheConfig():
// Device code __global__ void MyKernel() { ... } // Host code // Runtime API // cudaFuncCachePreferShared: shared memory is 48 KB // cudaFuncCachePreferEqual: shared memory is 32 KB // cudaFuncCachePreferL1: shared memory is 16 KB // cudaFuncCachePreferNone: no preference cudaFuncSetCacheConfig(MyKernel, cudaFuncCachePreferShared)
The default cache configuration is "prefer none," meaning "no preference." If a kernel is configured to have no preference, then it will default to the preference of the current thread/context, which is set using cudaDeviceSetCacheConfig()/cuCtxSetCacheConfig() (see the reference manual for details). If the current thread/context also has no preference (which is again the default setting), then whichever cache configuration was most recently used for any kernel will be the one that is used, unless a different cache configuration is required to launch the kernel (e.g., due to shared memory requirements). The initial configuration is 48 KB of shared memory and 16 KB of L1 cache.
Applications may query the L2 cache size by checking the l2CacheSize device property (see Device Enumeration). The maximum L2 cache size is 1.5 MB.
Multiprocessors are grouped into Graphics Processor Clusters (GPCs). A GPC includes three multiprocessors.
Each multiprocessor has a read-only data cache of 48 KB to speed up reads from device memory. It accesses this cache either directly (for devices of compute capability 3.5 or 3.7), or via a texture unit that implements the various addressing modes and data filtering mentioned in Texture and Surface Memory. When accessed via the texture unit, the read-only data cache is also referred to as texture cache.
G.4.2. Global Memory
Global memory accesses for devices of compute capability 3.x are cached in L2 and for devices of compute capability 3.5 or 3.7, may also be cached in the read-only data cache described in the previous section; they are normally not cached in L1. Some devices of compute capability 3.5 and devices of compute capability 3.7 allow opt-in to caching of global memory accesses in L1 via the -Xptxas -dlcm=ca option to nvcc.
Caching in L2 behaves in the same way as for devices of compute capability 2.x (see Global Memory).
Data that is read-only for the entire lifetime of the kernel can also be cached in the read-only data cache described in the previous section by reading it using the __ldg() function (see Read-Only Data Cache Load Function). When the compiler detects that the read-only condition is satisfied for some data, it will use __ldg() to read it. The compiler might not always be able to detect that the read-only condition is satisfied for some data. Marking pointers used for loading such data with both the const and __restrict__ qualifiers increases the likelihood that the compiler will detect the read-only condition.
Figure 16 shows some examples of global memory accesses and corresponding memory transactions.
G.5. Compute Capability 5.x
G.5.1. Architecture
- 128 CUDA cores for arithmetic operations (see Arithmetic Instructions for throughputs of arithmetic operations),
- 32 special function units for single-precision floating-point transcendental functions,
- 4 warp schedulers.
When a multiprocessor is given warps to execute, it first distributes them among the four schedulers. Then, at every instruction issue time, each scheduler issues one instruction for one of its assigned warps that is ready to execute, if any.
- a read-only constant cache that is shared by all functional units and speeds up reads from the constant memory space, which resides in device memory,
- a unified L1/texture cache of 24 KB used to cache reads from global memory,
- 64 KB of shared memory for devices of compute capability 5.0 or 96 KB of shared memory for devices of compute capability 5.2.
The unified L1/texture cache is also used by the texture unit that implements the various addressing modes and data filtering mentioned in Texture and Surface Memory.
There is also an L2 cache shared by all multiprocessors that is used to cache accesses to local or global memory, including temporary register spills. Applications may query the L2 cache size by checking the l2CacheSize device property (see Device Enumeration).
The cache behavior (e.g., whether reads are cached in both the unified L1/texture cache and L2 or in L2 only) can be partially configured on a per-access basis using modifiers to the load instruction.
Multiprocessors are grouped into Graphics Processor Clusters (GPCs). A GPC includes four multiprocessors.
G.5.2. Global Memory
Global memory accesses are always cached in L2 and caching in L2 behaves in the same way as for devices of compute capability 2.x (see Global Memory).
Data that is read-only for the entire lifetime of the kernel can also be cached in the unified L1/texture cache described in the previous section by reading it using the __ldg() function (see Read-Only Data Cache Load Function). When the compiler detects that the read-only condition is satisfied for some data, it will use __ldg() to read it. The compiler might not always be able to detect that the read-only condition is satisfied for some data. Marking pointers used for loading such data with both the const and __restrict__ qualifiers increases the likelihood that the compiler will detect the read-only condition.
- Perform the read using inline assembly with the appropriate modifier as described in the PTX reference manual;
- Compile with the -Xptxas -dlcm=ca compilation flag, in which case all reads are cached, except reads that are performed using inline assembly with a modifier that disables caching;
- Compile with the -Xptxas -fscm=ca compilation flag, in which case all reads are cached, including reads that are performed using inline assembly regardless of the modifier used.
H. Driver API
This appendix assumes knowledge of the concepts described in CUDA C Runtime.
The driver API is implemented in the cuda dynamic library (cuda.dll or cuda.so) which is copied on the system during the installation of the device driver. All its entry points are prefixed with cu.
It is a handle-based, imperative API: Most objects are referenced by opaque handles that may be specified to functions to manipulate the objects.
The objects available in the driver API are summarized in Table 14.
Object | Handle | Description |
---|---|---|
Device | CUdevice | CUDA-enabled device |
Context | CUcontext | Roughly equivalent to a CPU process |
Module | CUmodule | Roughly equivalent to a dynamic library |
Function | CUfunction | Kernel |
Heap memory | CUdeviceptr | Pointer to device memory |
CUDA array | CUarray | Opaque container for one-dimensional or two-dimensional data on the device, readable via texture or surface references |
Texture reference | CUtexref | Object that describes how to interpret texture memory data |
Surface reference | CUsurfref | Object that describes how to read or write CUDA arrays |
Event | CUevent | Object that describes a CUDA event |
The driver API must be initialized with cuInit() before any function from the driver API is called. A CUDA context must then be created that is attached to a specific device and made current to the calling host thread as detailed in Context.
Within a CUDA context, kernels are explicitly loaded as PTX or binary objects by the host code as described in Module. Kernels written in C must therefore be compiled separately into PTX or binary objects. Kernels are launched using API entry points as described in Kernel Execution.
Any application that wants to run on future device architectures must load PTX, not binary code. This is because binary code is architecture-specific and therefore incompatible with future architectures, whereas PTX code is compiled to binary code at load time by the device driver.
Here is the host code of the sample from Kernels written using the driver API:
int main() { int N = ...; size_t size = N * sizeof(float); // Allocate input vectors h_A and h_B in host memory float* h_A = (float*)malloc(size); float* h_B = (float*)malloc(size); // Initialize input vectors ... // Initialize cuInit(0); // Get number of devices supporting CUDA int deviceCount = 0; cuDeviceGetCount(&deviceCount); if (deviceCount == 0) { printf("There is no device supporting CUDA.\n"); exit (0); } // Get handle for device 0 CUdevice cuDevice; cuDeviceGet(&cuDevice, 0); // Create context CUcontext cuContext; cuCtxCreate(&cuContext, 0, cuDevice); // Create module from binary file CUmodule cuModule; cuModuleLoad(&cuModule, "VecAdd.ptx"); // Allocate vectors in device memory CUdeviceptr d_A; cuMemAlloc(&d_A, size); CUdeviceptr d_B; cuMemAlloc(&d_B, size); CUdeviceptr d_C; cuMemAlloc(&d_C, size); // Copy vectors from host memory to device memory cuMemcpyHtoD(d_A, h_A, size); cuMemcpyHtoD(d_B, h_B, size); // Get function handle from module CUfunction vecAdd; cuModuleGetFunction(&vecAdd, cuModule, "VecAdd"); // Invoke kernel int threadsPerBlock = 256; int blocksPerGrid = (N + threadsPerBlock - 1) / threadsPerBlock; void* args[] = { &d_A, &d_B, &d_C, &N }; cuLaunchKernel(vecAdd, blocksPerGrid, 1, 1, threadsPerBlock, 1, 1, 0, 0, args, 0); ... }
Full code can be found in the vectorAddDrv CUDA sample.
H.1. Context
A CUDA context is analogous to a CPU process. All resources and actions performed within the driver API are encapsulated inside a CUDA context, and the system automatically cleans up these resources when the context is destroyed. Besides objects such as modules and texture or surface references, each context has its own distinct address space. As a result, CUdeviceptr values from different contexts reference different memory locations.
A host thread may have only one device context current at a time. When a context is created with cuCtxCreate(), it is made current to the calling host thread. CUDA functions that operate in a context (most functions that do not involve device enumeration or context management) will return CUDA_ERROR_INVALID_CONTEXT if a valid context is not current to the thread.
Each host thread has a stack of current contexts. cuCtxCreate() pushes the new context onto the top of the stack. cuCtxPopCurrent() may be called to detach the context from the host thread. The context is then "floating" and may be pushed as the current context for any host thread. cuCtxPopCurrent() also restores the previous current context, if any.
A usage count is also maintained for each context. cuCtxCreate() creates a context with a usage count of 1. cuCtxAttach() increments the usage count and cuCtxDetach() decrements it. A context is destroyed when the usage count goes to 0 when calling cuCtxDetach() or cuCtxDestroy().
Usage count facilitates interoperability between third party authored code operating in the same context. For example, if three libraries are loaded to use the same context, each library would call cuCtxAttach() to increment the usage count and cuCtxDetach() to decrement the usage count when the library is done using the context. For most libraries, it is expected that the application will have created a context before loading or initializing the library; that way, the application can create the context using its own heuristics, and the library simply operates on the context handed to it. Libraries that wish to create their own contexts - unbeknownst to their API clients who may or may not have created contexts of their own - would use cuCtxPushCurrent() and cuCtxPopCurrent() as illustrated in Figure 19.
H.2. Module
Modules are dynamically loadable packages of device code and data, akin to DLLs in Windows, that are output by nvcc (see Compilation with NVCC). The names for all symbols, including functions, global variables, and texture or surface references, are maintained at module scope so that modules written by independent third parties may interoperate in the same CUDA context.
This code sample loads a module and retrieves a handle to some kernel:
CUmodule cuModule; cuModuleLoad(&cuModule, "myModule.ptx"); CUfunction myKernel; cuModuleGetFunction(&myKernel, cuModule, "MyKernel");
This code sample compiles and loads a new module from PTX code and parses compilation errors:
#define BUFFER_SIZE 8192 CUmodule cuModule; CUjit_option options[3]; void* values[3]; char* PTXCode = "some PTX code"; char error_log[BUFFER_SIZE]; int err; options[0] = CU_JIT_ERROR_LOG_BUFFER; values[0] = (void*)error_log; options[1] = CU_JIT_ERROR_LOG_BUFFER_SIZE_BYTES; values[1] = (void*)BUFFER_SIZE; options[2] = CU_JIT_TARGET_FROM_CUCONTEXT; values[2] = 0; err = cuModuleLoadDataEx(&cuModule, PTXCode, 3, options, values); if (err != CUDA_SUCCESS) printf("Link error:\n%s\n", error_log);
This code sample compiles, links, and loads a new module from multiple PTX codes and parses link and compilation errors:
#define BUFFER_SIZE 8192 CUmodule cuModule; CUjit_option options[6]; void* values[6]; float walltime; char error_log[BUFFER_SIZE], info_log[BUFFER_SIZE]; char* PTXCode0 = "some PTX code"; char* PTXCode1 = "some other PTX code"; CUlinkState linkState; int err; void* cubin; size_t cubinSize; options[0] = CU_JIT_WALL_TIME; values[0] = (void*)&walltime; options[1] = CU_JIT_INFO_LOG_BUFFER; values[1] = (void*)info_log; options[2] = CU_JIT_INFO_LOG_BUFFER_SIZE_BYTES; values[2] = (void*)BUFFER_SIZE; options[3] = CU_JIT_ERROR_LOG_BUFFER; values[3] = (void*)error_log; options[4] = CU_JIT_ERROR_LOG_BUFFER_SIZE_BYTES; values[4] = (void*)BUFFER_SIZE; options[5] = CU_JIT_LOG_VERBOSE; values[5] = (void*)1; cuLinkCreate(6, options, values, &linkState); err = cuLinkAddData(linkState, CU_JIT_INPUT_PTX, (void*)PTXCode0, strlen(PTXCode0) + 1, 0, 0, 0, 0); if (err != CUDA_SUCCESS) printf("Link error:\n%s\n", error_log); err = cuLinkAddData(linkState, CU_JIT_INPUT_PTX, (void*)PTXCode1, strlen(PTXCode1) + 1, 0, 0, 0, 0); if (err != CUDA_SUCCESS) printf("Link error:\n%s\n", error_log); cuLinkComplete(linkState, &cubin, &cubinSize); printf("Link completed in %fms. Linker Output:\n%s\n", walltime, info_log); cuModuleLoadData(cuModule, cubin); cuLinkDestroy(linkState);
Full code can be found in the ptxjit CUDA sample.
H.3. Kernel Execution
cuLaunchKernel() launches a kernel with a given execution configuration.
Parameters are passed either as an array of pointers (next to last parameter of cuLaunchKernel()) where the nth pointer corresponds to the nth parameter and points to a region of memory from which the parameter is copied, or as one of the extra options (last parameter of cuLaunchKernel()).
When parameters are passed as an extra option (the CU_LAUNCH_PARAM_BUFFER_POINTER option), they are passed as a pointer to a single buffer where parameters are assumed to be properly offset with respect to each other by matching the alignment requirement for each parameter type in device code.
Alignment requirements in device code for the built-in vector types are listed in Table 3. For all other basic types, the alignment requirement in device code matches the alignment requirement in host code and can therefore be obtained using __alignof(). The only exception is when the host compiler aligns double and long long (and long on a 64-bit system) on a one-word boundary instead of a two-word boundary (for example, using gcc's compilation flag -mno-align-double) since in device code these types are always aligned on a two-word boundary.
CUdeviceptr is an integer, but represents a pointer, so its alignment requirement is __alignof(void*).
The following code sample uses a macro (ALIGN_UP()) to adjust the offset of each parameter to meet its alignment requirement and another macro (ADD_TO_PARAM_BUFFER()) to add each parameter to the parameter buffer passed to the CU_LAUNCH_PARAM_BUFFER_POINTER option.
#define ALIGN_UP(offset, alignment) \ (offset) = ((offset) + (alignment) - 1) & ~((alignment) - 1) char paramBuffer[1024]; size_t paramBufferSize = 0; #define ADD_TO_PARAM_BUFFER(value, alignment) \ do { \ paramBufferSize = ALIGN_UP(paramBufferSize, alignment); \ memcpy(paramBuffer + paramBufferSize, \ &(value), sizeof(value)); \ paramBufferSize += sizeof(value); \ } while (0) int i; ADD_TO_PARAM_BUFFER(i, __alignof(i)); float4 f4; ADD_TO_PARAM_BUFFER(f4, 16); // float4's alignment is 16 char c; ADD_TO_PARAM_BUFFER(c, __alignof(c)); float f; ADD_TO_PARAM_BUFFER(f, __alignof(f)); CUdeviceptr devPtr; ADD_TO_PARAM_BUFFER(devPtr, __alignof(devPtr)); float2 f2; ADD_TO_PARAM_BUFFER(f2, 8); // float2's alignment is 8 void* extra[] = { CU_LAUNCH_PARAM_BUFFER_POINTER, paramBuffer, CU_LAUNCH_PARAM_BUFFER_SIZE, ¶mBufferSize, CU_LAUNCH_PARAM_END }; cuLaunchKernel(cuFunction, blockWidth, blockHeight, blockDepth, gridWidth, gridHeight, gridDepth, 0, 0, 0, extra);
The alignment requirement of a structure is equal to the maximum of the alignment requirements of its fields. The alignment requirement of a structure that contains built-in vector types, CUdeviceptr, or non-aligned double and long long, might therefore differ between device code and host code. Such a structure might also be padded differently. The following structure, for example, is not padded at all in host code, but it is padded in device code with 12 bytes after field f since the alignment requirement for field f4 is 16.
typedef struct { float f; float4 f4; } myStruct;
H.4. Interoperability between Runtime and Driver APIs
An application can mix runtime API code with driver API code.
If a context is created and made current via the driver API, subsequent runtime calls will pick up this context instead of creating a new one.
If the runtime is initialized (implicitly as mentioned in CUDA C Runtime), cuCtxGetCurrent() can be used to retrieve the context created during initialization. This context can be used by subsequent driver API calls.
Device memory can be allocated and freed using either API. CUdeviceptr can be cast to regular pointers and vice-versa:
CUdeviceptr devPtr; float* d_data; // Allocation using driver API cuMemAlloc(&devPtr, size); d_data = (float*)devPtr; // Allocation using runtime API cudaMalloc(&d_data, size); devPtr = (CUdeviceptr)d_data;
In particular, this means that applications written using the driver API can invoke libraries written using the runtime API (such as cuFFT, cuBLAS, ...).
All functions from the device and version management sections of the reference manual can be used interchangeably.
I. CUDA Environment Variables
Environment variables related to the Multi-Process Service are documented in the Multi-Process Service section of the GPU Deployment and Management guide.
Category | Variable | Values | Description |
---|---|---|---|
Device Enumeration and Properties | CUDA_VISIBLE_DEVICES | A comma-separated sequence of GPU identifiers | GPU identifiers are given as integer indices or as UUID strings. GPU UUID strings should follow the same format as given by nvidia-smi, such as GPU-8932f937-d72c-4106-c12f-20bd9faed9f6. However, for convenience, abbreviated forms are allowed; simply specify enough digits from the beginning of the GPU UUID to uniquely identify that GPU in the target system. For example, CUDA_VISIBLE_DEVICES=GPU-8932f937 may be a valid way to refer to the above GPU UUID, assuming no other GPU in the system shares this prefix. Only the devices whose index is present in the sequence are visible to CUDA applications and they are enumerated in the order of the sequence. If one of the indices is invalid, only the devices whose index precedes the invalid index are visible to CUDA applications. For example, setting CUDA_VISIBLE_DEVICES to 2,1 causes device 0 to be invisible and device 2 to be enumerated before device 1. Setting CUDA_VISIBLE_DEVICES to 0,2,-1,1 causes devices 0 and 2 to be visible and device 1 to be invisible. |
CUDA_MANAGED_FORCE_DEVICE_ALLOC | 0 or 1 (default is 0) | Forces the driver to place all managed allocations in device memory. | |
CUDA_DEVICE_ORDER | FASTEST_FIRST, PCI_BUS_ID, (default is FASTEST_FIRST) | FASTEST_FIRST causes CUDA to guess which device is fastest using a simple heuristic, and make that device 0, leaving the order of the rest of the devices unspecified. PCI_BUS_ID orders devices by PCI bus ID in ascending order. | |
Compilation | CUDA_CACHE_DISABLE | 0 or 1 (default is 0) | Disables caching (when set to 1) or enables caching (when set to 0) for just-in-time-compilation. When disabled, no binary code is added to or retrieved from the cache. |
CUDA_CACHE_PATH | filepath | Specifies the folder where the just-in-time compiler caches binary codes; the default values are:
| |
CUDA_CACHE_MAXSIZE | integer (default is 33554432 (32 MB) and maximum is 4294967296 (4 GB)) | Specifies the size in bytes of the cache used by the just-in-time compiler. Binary codes whose size exceeds the cache size are not cached. Older binary codes are evicted from the cache to make room for newer binary codes if needed. | |
CUDA_FORCE_PTX_JIT | 0 or 1 (default is 0) | When set to 1, forces the device driver to ignore any binary code embedded in an application (see Application Compatibility) and to just-in-time compile embedded PTX code instead. If a kernel does not have embedded PTX code, it will fail to load. This environment variable can be used to validate that PTX code is embedded in an application and that its just-in-time compilation works as expected to guarantee application forward compatibility with future architectures (see Just-in-Time Compilation). | |
Execution | CUDA_LAUNCH_BLOCKING | 0 or 1 (default is 0) | Disables (when set to 1) or enables (when set to 0) asynchronous kernel launches. |
CUDA_DEVICE_MAX_CONNECTIONS | 1 to 32 (default is 8) | Sets the number of compute and copy engine concurrent connections (work queues) from the host to each device of compute capability 3.5 and above. | |
CUDA_AUTO_BOOST | 0 or 1 | Overrides the autoboost behavior set by the --auto-boost-default option of nvidia-smi. If an application requests via this environment variable a behavior that is different from nvidia-smi's, its request is honored if there is no other application currently running on the same GPU that successfully requested a different behavior, otherwise it is ignored. | |
cuda-gdb (on Mac and Linux platforms) | CUDA_DEVICE_WAITS_ON_EXCEPTION | 0 or 1 (default is 0) | When set to 1, a CUDA application will halt when a device exception occurs, allowing a debugger to be attached for further debugging. |
Driver-Based Profiler (these variables have no impact on the Visual Profiler or the command line profiler nvprof) | CUDA_DEVICE | Integer (default is 0) | Specifies the index of the device to profile. |
COMPUTE_PROFILE | 0 or 1 (default is 0) | Disables profiling (when set to 0) or enables profiling (when set to 1). | |
COMPUTE_PROFILE_CONFIG | Path | Specifies the configuration file to set profiling options and select performance counters. | |
COMPUTE_PROFILE_LOG | Path | Specifies the file used to save the profiling output. In case of multiple contexts, use '%d' in the COMPUTE_PROFILE_LOG to generate separate output files for each context - with '%d' substituted by the context number. | |
COMPUTE_PROFILE_CSV | 0 or 1 (default is 0) | When set to 1, the output will be in comma-separated format. |
J. Unified Memory Programming
J.1. Unified Memory Introduction
- GPU programming is simplified by unifying memory spaces coherently across all GPUs and CPUs in the system and by providing tighter and more straightforward language integration for CUDA programmers.
- Data access speed is maximized by transparently migrating data towards the processor using it.
In simple terms, Unified Memory eliminates the need for explicit data movement via the cudaMemcpy*() routines without the performance penalty incurred by placing all data into zero-copy memory. Data movement, of course, still takes place, so a program’s run time typically does not decrease; Unified Memory instead enables the writing of simpler and more maintainable code.
Unified Memory offers a “single-pointer-to-data” model that is conceptually similar to CUDA’s zero-copy memory. One key difference between the two is that with zero-copy allocations the physical location of memory is pinned in CPU system memory such that a program may have fast or slow access to it depending on where it is being accessed from. Unified Memory, on the other hand, decouples memory and execution spaces so that all data accesses are fast.
The term Unified Memory describes as a system that provides memory management services to a wide range of programs, from those targeting the Runtime API down to those using the Virtual ISA (PTX). Part of this system defines the managed memory space that opts in to Unified Memory services.
Managed memory is interoperable and interchangeable with device-specific allocations, such as those created using the cudaMalloc() routine. All CUDA operations that are valid on device memory are also valid on managed memory; the primary difference is that the host portion of a program is able to reference and access the memory as well.
J.1.1. Simplifying GPU Programming
Unification of memory spaces means that there is no longer any need for explicit memory transfers between host and device. Any allocation created in the managed memory space is automatically migrated to where it is needed.
A program allocates managed memory in one of two ways: via the new cudaMallocManaged() routine, which is semantically similar to cudaMalloc(); or by defining a global __managed__ variable, which is semantically similar to a __device__ variable. Precise definitions of these are found later in this document.
__global__ void AplusB( int *ret, int a, int b) { ret[threadIdx.x] = a + b + threadIdx.x; } int main() { int *ret; cudaMalloc(&ret, 1000 * sizeof(int)); AplusB<<< 1, 1000 >>>(ret, 10, 100); int *host_ret = (int *)malloc(1000 * sizeof(int)); cudaMemcpy(host_ret, ret, 1000 * sizeof(int), cudaMemcpyDefault); for(int i=0; i<1000; i++) printf("%d: A+B = %d\n", i, host_ret[i]); free(host_ret); cudaFree(ret); return 0; }
This first example combines two numbers together on the GPU with a per-thread ID and returns the values in an array. Without managed memory, both host- and device-side storage for the return values is required (host_ret and ret in the example), as is an explicit copy between the two using cudaMemcpy().
__global__ void AplusB(int *ret, int a, int b) { ret[threadIdx.x] = a + b + threadIdx.x; } int main() { int *ret; cudaMallocManaged(&ret, 1000 * sizeof(int)); AplusB<<< 1, 1000 >>>(ret, 10, 100); cudaDeviceSynchronize(); for(int i=0; i<1000; i++) printf("%d: A+B = %d\n", i, ret[i]); cudaFree(ret); return 0; }
__device__ __managed__ int ret[1000]; __global__ void AplusB(int a, int b) { ret[threadIdx.x] = a + b + threadIdx.x; } int main() { AplusB<<< 1, 1000 >>>(10, 100); cudaDeviceSynchronize(); for(int i=0; i<1000; i++) printf("%d: A+B = %d\n", i, ret[i]); return 0; }
Note the absence of explicit cudaMemcpy() commands and the fact that the return array ret is visible on both CPU and GPU.
J.1.2. Data Migration and Coherency
Unified Memory attempts to optimize memory performance by migrating data towards the device where it is being accessed (that is, moving data to host memory if the CPU is accessing it and to device memory if the GPU will access it). Data migration is fundamental to Unified Memory, but is transparent to a program. The system will try to place data in the location where it can most efficiently be accessed without violating coherency.
The physical location of data is invisible to a program and may be changed at any time, but accesses to the data’s virtual address will remain valid and coherent from any processor regardless of locality. Note that maintaining coherence is the primary requirement, ahead of performance; within the constraints of the host operating system, the system is permitted to either fail accesses or move data in order to maintain global coherence between processors.
J.1.3. Multi-GPU Support
Multi-GPU systems are able to use managed memory, but data does not migrate between GPUs. Managed memory allocation behaves identically to unmanaged memory allocated using cudaMalloc(): the current active device is the home for the physical allocation, and all other GPUs receive peer mappings to the memory. This means that other GPUs in the system will access the memory at reduced bandwidth over the PCIe bus.
If peer mappings are not supported between the GPUs in the system, then the managed memory pages are placed in CPU system memory (“zero-copy” memory), and all GPUs will experience PCIe bandwidth restrictions. See Managed Memory with Multi-GPU Programs for details.
J.2. Programming Model
J.2.1. Managed Memory Opt In
CUDA requires a program to opt in to automatic data management by either annotating a __device__ variable with the new __managed__ keyword (see the Language Integration section) or by using a new cudaMallocManaged() call to allocate data.
Managed memory must always be allocated on the heap, either with an allocator or by declaring global storage. It is not possible either to associate previously allocated memory with Unified Memory, or to have the Unified Memory system manage a CPU or a GPU stack pointer.
J.2.1.1. Explicit Allocation Using cudaMallocManaged()
cudaError_t cudaMallocManaged(void **devPtr, size_t size, unsigned int flags=0);
__global__ void printme(char *str) { printf(str); } int main() { // Allocate 100 bytes of memory, accessible to both Host and Device code char *s; cudaMallocManaged(&s, 100); // Note direct Host-code use of "s" strncpy(s, "Hello Unified Memory\n", 99); // Here we pass "s" to a kernel without explicitly copying printme<<< 1, 1 >>>(s); cudaDeviceSynchronize(); // Free as for normal CUDA allocations cudaFree(s); return 0; }
A program’s behavior is functionally unchanged when cudaMalloc() is replaced with cudaMallocManaged(); however, the program should go on to eliminate explicit memory copies and take advantage of automatic migration. Additionally, dual pointers (one to host and one to device memory) can be eliminated.
In CUDA 6.0, device code is not able to call cudaMallocManaged(). All managed memory must be allocated from the host or at global scope (see the next section). Allocations on the device heap using malloc() in a kernel will not be created in the managed memory space, and so will not be accessible to CPU code.
J.2.1.2. Global-Scope Managed Variables Using __managed__
__device__ __managed__ int x[2]; __device__ __managed__ int y; __global__ void kernel() { x[1] = x[0] + y; } int main() { x[0] = 3; y = 5; kernel<<< 1, 1 >>>(); cudaDeviceSynchronize(); printf("result = %d\n", x[1]); return 0; }
All semantics of the original __device__ memory space, along with some additional unified-memory-specific constraints, are inherited by the managed variable. See Compilation with NVCC) in the CUDA C Programming Guide for details.
Note that variables marked __constant__ may not also be marked as __managed__; this annotation is reserved for __device__ variables only. Constant memory must be set either statically at compile time or by using cudaMemcpyToSymbol() as usual in CUDA.
J.2.2. Coherency and Concurrency
J.2.2.1. GPU Exclusive Access To Managed Memory
To ensure coherency, the Unified Memory programming model puts constraints on data accesses while both the CPU and GPU are executing concurrently. In effect, the GPU has exclusive access to all managed data while any kernel operation is executing, regardless of whether the specific kernel is actively using the data. When managed data is used with cudaMemcpy*() or cudaMemset*(), the system may choose to access the source or destination from the host or the device, which will put constraints on concurrent CPU access to that data while the cudaMemcpy*() or cudaMemset*() is executing. See Memcpy()/Memset() Behavior With Managed Memory for further details.
__device__ __managed__ int x, y=2; __global__ void kernel() { x = 10; } int main() { kernel<<< 1, 1 >>>(); y = 20; // ERROR: CPU access concurrent with GPU cudaDeviceSynchronize(); return 0; }
__device__ __managed__ int x, y=2; __global__ void kernel() { x = 10; } int main() { kernel<<< 1, 1 >>>(); cudaDeviceSynchronize(); y = 20; // Success – GPU is idle so access is OK return 0; }
As this example shows, a CPU thread may not access any managed data in between performing a kernel launch and a subsequent synchronization call, regardless of whether the GPU kernel actually touches that same data (or any managed data at all). The mere potential for concurrent CPU and GPU access is sufficient for a process-level exception to be raised.
Note that if memory is dynamically allocated with cudaMallocManaged() or cuMemAllocManaged() while the GPU is active, the behavior of the memory is unspecified until additional work is launched or the GPU is synchronized. Attempting to access the memory on the CPU during this time may or may not cause a segmentation fault. This does not apply to memory allocated using the flag cudaMemAttachHost or CU_MEM_ATTACH_HOST.
J.2.2.2. Explicit Synchronization and Logical GPU Activity
Note that explicit synchronization is required even if kernel runs quickly and finishes before the CPU touches y in the above example. Unified Memory uses logical activity to determine whether the GPU is idle. This aligns with the CUDA programming model, which specifies that a kernel can run at any time following a launch and is not guaranteed to have finished until the host issues a synchronization call.
Any function call that logically guarantees the GPU completes its work is valid. This includes cudaDeviceSynchronize(); cudaStreamSynchronize() and cudaStreamQuery() (provided it returns cudaSuccess and not cudaErrorNotReady) where the specified stream is the only stream still executing on the GPU; cudaEventSynchronize() and cudaEventQuery() in cases where the specified event is not followed by any device work; as well as uses of cudaMemcpy() and cudaMemset() that are documented as being fully synchronous with respect to the host.
Dependencies created between streams will be followed to infer completion of other streams by synchronizing on a stream or event. Dependencies can be created via cudaStreamWaitEvent() or implicitly when using the default (NULL) stream.
It is legal for the CPU to access managed data from within a stream callback, provided no other stream that could potentially be accessing managed data is active on the GPU. In addition, a callback that is not followed by any device work can be used for synchronization: for example, by signaling a condition variable from inside the callback; otherwise, CPU access is valid only for the duration of the callback(s).
- It is always permitted for the CPU to access non-managed zero-copy data while the GPU is active.
- The GPU is considered active when it is running any kernel, even if that kernel does not make use of managed data. If a kernel might use data, then access is forbidden.
- There are no constraints on concurrent inter-GPU access of managed memory, other than those that apply to multi-GPU access of non-managed memory.
- There are no constraints on concurrent GPU kernels accessing managed data.
int main() { cudaStream_t stream1, stream2; cudaStreamCreate(&stream1); cudaStreamCreate(&stream2); int *non_managed, *managed, *also_managed; cudaMallocHost(&non_managed, 4); // Non-managed, CPU-accessible memory cudaMallocManaged(&managed, 4); cudaMallocManaged(&also_managed, 4); // Point 1: CPU can access non-managed data. kernel<<< 1, 1, 0, stream1 >>>(managed); *non_managed = 1; // Point 2: CPU cannot access any managed data while GPU is busy. // Note we have not yet synchronized, so "kernel" is still active. *also_managed = 2; // Will issue segmentation fault // Point 3: Concurrent GPU kernels can access the same data. kernel<<< 1, 1, 0, stream2 >>>(managed); // Point 4: Multi-GPU concurrent access is also permitted. cudaSetDevice(1); kernel<<< 1, 1 >>>(managed); return 0; }
J.2.2.3. Managing Data Visibility and Concurrent CPU + GPU Access
Until now it was assumed that any active kernel may use any managed memory and that it was invalid to use managed memory from the CPU while a kernel is active. Here we present a system for finer-grained control of managed memory.
The CUDA programming model provides streams as a mechanism for programs to indicate dependence and independence among kernel launches. Kernels launched into the same stream are guaranteed to execute consecutively, while kernels launched into different streams are permitted to execute concurrently. Streams describe independence between work items and hence allow potentially greater efficiency through concurrency.
cudaError_t cudaStreamAttachMemAsync(cudaStream_t stream, void *ptr, size_t length=0, unsigned int flags=0);
The cudaStreamAttachMemAsync() function associates length bytes of memory starting from ptr with the specified stream. (Currently, length must always be 0 to indicate that the entire region should be attached.) Because of this association, the Unified Memory system allows CPU access to this memory region so long as all operations in stream have completed, regardless of whether other streams are active. In effect, this constrains exclusive ownership of the managed memory region by an active GPU to per-stream activity instead of whole-GPU activity.
Most importantly, if an allocation is not associated with a specific stream, it is visible to all running kernels regardless of their stream. This is the default visibility for a cudaMallocManaged() allocation or a __managed__ variable; hence, the simple-case rule that the CPU may not touch the data while any kernel is running.
By associating an allocation with a specific stream, the program makes a guarantee that only kernels launched into that stream will touch that data. No error checking is performed by the Unified Memory system: it is the programmer’s responsibility to ensure that guarantee is honored.
In addition to allowing greater concurrency, the use of cudaStreamAttachMemAsync() can (and typically does) enable data transfer optimizations within the Unified Memory system that may affect latencies and other overhead.
J.2.2.4. Stream Association Examples
__device__ __managed__ int x, y=2; __global__ void kernel() { x = 10; } int main() { cudaStream_t stream1; cudaStreamCreate(&stream1); cudaStreamAttachMemAsync(stream1, &y, 0, cudaMemAttachHost); cudaDeviceSynchronize(); // Wait for Host attachment to occur. kernel<<< 1, 1, 0, stream1 >>>(); // Note: Launches into stream1. y = 20; // Success – a kernel is running but “y” // has been associated with no stream. return 0; }
Here we explicitly associate y with host accessibility, thus enabling access at all times from the CPU. (As before, note the absence of cudaDeviceSynchronize() before the access.) Accesses to y by the GPU running kernel will now produce undefined results.
__device__ __managed__ int x, y=2; __global__ void kernel() { x = 10; } int main() { cudaStream_t stream1; cudaStreamCreate(&stream1); cudaStreamAttachMemAsync(stream1, &x);// Associate “x” with stream1. cudaDeviceSynchronize(); // Wait for “x” attachment to occur. kernel<<< 1, 1, 0, stream1 >>>(); // Note: Launches into stream1. y = 20; // ERROR: “y” is still associated globally // with all streams by default return 0; }
Note how the access to y will cause an error because, even though x has been associated with a stream, we have told the system nothing about who can see y. The system therefore conservatively assumes that kernel might access it and prevents the CPU from doing so.
J.2.2.5. Stream Attach With Multithreaded Host Programs
The primary use for cudaStreamAttachMemAsync() is to enable independent task parallelism using CPU threads. Typically in such a program, a CPU thread creates its own stream for all work that it generates because using CUDA’s NULL stream would cause dependencies between threads.
The default global visibility of managed data to any GPU stream can make it difficult to avoid interactions between CPU threads in a multi-threaded program. Function cudaStreamAttachMemAsync() is therefore used to associate a thread’s managed allocations with that thread’s own stream, and the association is typically not changed for the life of the thread.
// This function performs some task, in its own private stream. void run_task(int *in, int *out, int length) { // Create a stream for us to use. cudaStream_t stream; cudaStreamCreate(&stream); // Allocate some managed data and associate with our stream. // Note the use of the host-attach flag to cudaMallocManaged(); // we then associate the allocation with our stream so that // our GPU kernel launches can access it. int *data; cudaMallocManaged((void **)&data, length, cudaMemAttachHost); cudaStreamAttachMemAsync(stream, data); cudaStreamSynchronize(stream); // Iterate on the data in some way, using both Host & Device. for(int i=0; i<N; i++) { transform<<< 100, 256, 0, stream >>>(in, data, length); cudaStreamSynchronize(stream); host_process(data, length); // CPU uses managed data. convert<<< 100, 256, 0, stream >>>(out, data, length); } cudaStreamSynchronize(stream); cudaStreamDestroy(stream); cudaFree(data); }
In this example, the allocation-stream association is established just once, and then data is used repeatedly by both the host and device. The result is much simpler code than occurs with explicitly copying data between host and device, although the result is the same.
J.2.2.6. Advanced Topic: Modular Programs and Data Access Constraints
In the previous example cudaMallocManaged() specifies the cudaMemAttachHost flag, which creates an allocation that is initially invisible to device-side execution. (The default allocation would be visible to all GPU kernels on all streams.) This ensures that there is no accidental interaction with another thread’s execution in the interval between the data allocation and when the data is acquired for a specific stream.
J.2.2.7. Memcpy()/Memset() Behavior With Managed Memory
Since managed memory can be accessed from either the host or the device, cudaMemcpy*() relies on the type of transfer, specified using cudaMemcpyKind, to determine whether the data should be accessed as a host pointer or a device pointer.
If cudaMemcpyHostTo* is specified and the source data is managed, then it will be accessed from the device if it has global visibility or if it’s associated with the stream being used for the copy operation; otherwise, it will be accessed from the host. Similar rules apply to the destination when cudaMemcpy*ToHost is specified and the destination is managed memory. Note that a segmentation fault can occur during the copy operation if data is being accessed from the host and its associated stream is active on the GPU.
If cudaMemcpyDeviceTo* is specified and the source data is managed, then it will be accessed from the device. The source must either have global visibility or it must be associated with the copy stream; otherwise, an error is returned. Similar rules apply to the destination when cudaMemcpy*ToDevice is specified and the destination is managed memory.
If cudaMemcpyDefault is specified, then managed data will be accessed from the device if it has global visibility or if it’s associated with the copy stream; otherwise, it will be accessed from the host.
When using cudaMemset*() with managed memory, the data is always accessed from the device. The data must either have global visibility, or it must be associated with the stream being used for the cudaMemset() operation; otherwise, an error is returned.
When data is accessed from the device either by cudaMemcpy*() or cudaMemset*(), the stream of operation is considered to be active on the GPU. During this time, any CPU access of data that is associated with that stream or data that has global visibility, will result in a segmentation fault. The program must synchronize appropriately to ensure the operation has completed before accessing any associated data from the CPU.
J.2.3. Language Integration
Users of the CUDA Runtime API who compile their host code using nvcc have access to additional language integration features, such as shared symbol names and inline kernel launch via the <<<...>>> operator. Unified Memory adds one additional element to CUDA’s language integration: variables annotated with the __managed__ keyword can be referenced directly from both host and device code.
// Managed variable declaration is an extra annotation with __device__ __device__ __managed__ int x; __global__ void kernel() { // Reference "x" directly - it's a normal variable on the GPU. printf( "GPU sees: x = %d\n" , x); } int main() { // Set "x" from Host code. Note it's just a normal variable on the CPU. x = 1234; // Launch a kernel which uses "x" from the GPU. kernel<<< 1, 1 >>>(); cudaDeviceSynchronize(); return 0; }The new capability introduced with __managed__ variables is that the symbol is available in both device code and in host code without the need to dereference a pointer, and the data is shared by all. This makes it particularly easy to exchange data between host and device programs without the need for explicit allocations or copying.
Semantically, the behavior of __managed__ variables is identical to that of storage allocated via cudaMallocManaged(). Data is hosted in physical GPU storage and is visible to all GPUs in the system as well as the CPU. Stream visibility defaults to cudaMemAttachGlobal, but may be constrained using cudaStreamAttachMemAsync().
A valid CUDA context is necessary for the correct operation of __managed__ variables. Accessing __managed__ variables can trigger CUDA context creation if a context for the current device hasn’t already been created. In the example above, accessing x before the kernel launch triggers context creation on device 0. In the absence of that access, the kernel launch would have triggered context creation.
C++ objects declared as __managed__ are subject to certain specific constraints, particularly where static initializers are concerned. Please refer to C/C++ Language Support in the CUDA C Programming Guide for a list of these constraints.
J.2.3.1. Host Program Errors with __managed__ Variables
The use of __managed__ variables depends upon the underlying Unified Memory system functioning correctly. Incorrect functioning can occur if, for example, the CUDA installation failed or if the CUDA context creation was unsuccessful.
When CUDA-specific operations fail, typically an error is returned that indicates the source of the failure. Using __managed__ variables introduces a new failure mode whereby a non-CUDA operation (for example, CPU access to what should be a valid host memory address) can fail if the Unified Memory system is not operating correctly. Such invalid memory accesses cannot easily be attributed to the underlying CUDA subsystem, although a debugger such as cuda-gdb will indicate that a managed memory address is the source of the failure.
J.2.4. Querying Unified Memory Support
J.2.4.1. Device Properties
Unified Memory is supported only on devices with compute capability 3.0 or higher. A program may query whether a GPU device supports managed memory by using cudaGetDeviceProperties() and checking the new managedMemSupported property. The capability can also be determined using the individual attribute query function cudaDeviceGetAttribute() with the attribute cudaDevAttrManagedMemSupported.
Either property will be set to 1 if managed memory allocations are permitted on the GPU and under the current operating system. Note that Unified Memory is not supported for 32-bit applications (unless on Android), even if a GPU is of sufficient capability.
J.2.4.2. Pointer Attributes
To determine if a given pointer refers to managed memory, a program can call cudaPointerGetAttributes() and check the value of the isManaged attribute. This attribute is set to 1 if the pointer refers to managed memory and to 0 if not.
J.2.5. Advanced Topics
J.2.5.1. Managed Memory with Multi-GPU Programs
Managed allocations are automatically visible to all GPUs in a system via the peer-to-peer capabilities of the GPUs. If peer mappings are not available (for example, between GPUs of different architectures), then the system will fall back to using zero-copy memory in order to guarantee data visibility. This fallback happens automatically, regardless of whether both GPUs are actually used by a program.
If only one GPU is actually going to be used, it is necessary to set the CUDA_VISIBLE_DEVICES environment variable before launching the program. This constrains which GPUs are visible and allows managed memory to be allocated in GPU memory. On a system with more than two GPUs, so long as peer mapping is supported between all visible GPUs, managed allocations will not fall back to zero-copy memory.
Alternatively, users can also set CUDA_MANAGED_FORCE_DEVICE_ALLOC to a non-zero value to force the driver to always use device memory for physical storage. When this environment variable is set to a non-zero value, all devices used in that process that support managed memory have to be peer-to-peer compatible with each other. The error ::cudaErrorInvalidDevice will be returned if a device that supports managed memory is used and it is not peer-to-peer compatible with any of the other managed memory supporting devices that were previously used in that process, even if ::cudaDeviceReset has been called on those devices. These environment variables are described in Appendix CUDA Environment Variables.
J.2.5.2. Using fork() with Managed Memory
The Unified Memory system does not allow sharing of managed memory pointers between processes. It will not correctly manage memory handles that have been duplicated via a fork() operation. Results will be undefined if either the child or parent accesses managed data following a fork().
It is safe, however, to fork() a child process that then immediately exits via an exec() call, because the child drops the memory handles and the parent becomes the sole owner once again. It is not safe for the parent to exit and leave the child to access the handles.
Notices
Notice
ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, "MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.
Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no responsibility for the consequences of use of such information or for any infringement of patents or other rights of third parties that may result from its use. No license is granted by implication of otherwise under any patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all other information previously supplied. NVIDIA Corporation products are not authorized as critical components in life support devices or systems without express written approval of NVIDIA Corporation.
Read more at: http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#ixzz4FIu2mZke
Follow us: @GPUComputing on Twitter | NVIDIA on Facebook