【动态规划】【数学方法】Leetcode 343. 整数拆分

文章介绍了如何使用动态规划解决LeetCode问题343,讨论了拆分整数以获得最大乘积的方法,包括递推公式、dp数组的构建和遍历策略。两种解法分别涉及O(N^2)和O(N)的时间复杂度,以及相应的代码实现。

【动态规划】【数学方法】Leetcode 343. 整数拆分

---------------🎈🎈343. 整数拆分 题目链接🎈🎈-------------------

解法 动态规划

😒: 我的代码实现============>

动规五部曲

✒️确定dp数组以及下标的含义

dp[i] 就是当前数字拆分后得到的最大乘积

✒️确定递推公式⭐️

⭐️拆分出一个数 j 来。理解 j 是拆分 i 的第一个整数
dp[i]最大乘积可以由 拆分的两个数 j 和(i-j)相乘得到
dp[i]最大乘积也可以由 拆分的三个或以上数 j 和 dp[i-j]相乘得到
递推公式:dp[i] = max({dp[i], j × (i-j), j × dp[i-j] })

✒️dp数组初始化

dp[0] dp[1]无法拆分,所以没意义
dp[2] = 1,后面递推从3开始即可

✒️确定遍历顺序

dp[i] 是依靠 dp[i - j]的状态,所以遍历i一定是从前向后遍历,先有dp[i - j]再有dp[i]。

✒️举例推导dp数组

在这里插入图片描述

时间复杂度O(N^2)
空间复杂度O(N)

📘代码

class Solution {
   
   
    public int integerBreak(int n) {
   
   
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值