Tensorflow 2. 训练过程,服务器显示Resource exhausted?

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/princexiexiaofeng/article/details/79975848

  我遇到的问题:Resource exhausted: OOM when allocating tensor with shape[256, 50000] Traceback (most recent call last): …

  问题原因:我在seq2seq模型和attention机制的基础上,加入一个新的encoder、并且调整了attention计算公式。问题在于引入了新的变量和参数,因此服务器内存资源不够分配。

  解决方法:观察参数设置发现,原先的vocab_size=50K偏大了,把vocab_size调整为40K,没有报错。(此类问题需要调小vocab_size、batch_size等等)。

没有更多推荐了,返回首页

私密
私密原因:
请选择设置私密原因
  • 广告
  • 抄袭
  • 版权
  • 政治
  • 色情
  • 无意义
  • 其他
其他原因:
120
出错啦
系统繁忙,请稍后再试

关闭