###### K - Goldbach's Conjecture解题报告

K - Goldbach's Conjecture
Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u

Description

In 1742, Christian Goldbach, a German amateur mathematician, sent a letter to Leonhard Euler in which he made the following conjecture:
Every even number greater than 4 can be
written as the sum of two odd prime numbers.

For example:
8 = 3 + 5. Both 3 and 5 are odd prime numbers.
20 = 3 + 17 = 7 + 13.
42 = 5 + 37 = 11 + 31 = 13 + 29 = 19 + 23.

Today it is still unproven whether the conjecture is right. (Oh wait, I have the proof of course, but it is too long to write it on the margin of this page.)
Anyway, your task is now to verify Goldbach's conjecture for all even numbers less than a million.

Input

The input will contain one or more test cases.
Each test case consists of one even integer n with 6 <= n < 1000000.
Input will be terminated by a value of 0 for n.

Output

For each test case, print one line of the form n = a + b, where a and b are odd primes. Numbers and operators should be separated by exactly one blank like in the sample output below. If there is more than one pair of odd primes adding up to n, choose the pair where the difference b - a is maximized. If there is no such pair, print a line saying "Goldbach's conjecture is wrong."

Sample Input

8
20
42
0


Sample Output

8 = 3 + 5
20 = 3 + 17
42 = 5 + 37


#include<iostream>
#include<time.h>
short prime[1000000];
using namespace std;
int main()
{
int i,j,s=0,n,num;
memset(prime,0,sizeof(prime));
for(i=2;i<1000000;i++)
for(j=2;i*j<1000000;j++)
{
if(prime[i*j]==0)
prime[i*j]=1;
}
while(scanf("%d",&n)&&n!=0)
{
for(i=3;i*2<=n;i+=2)
if(prime[i]==0&&prime[n-i]==0)
{
printf("%d = %d + %d\n",n,i,n-i);
goto end;
}
printf("Goldbach's conjecture is wrong.\n");
end:;
}

return 0;
}


#### hdu 1397 Goldbach's Conjecture

2014-12-05 13:13:38

#### 【九度】题目1440：Goldbach's Conjecture 2

2017-01-14 20:07:35

#### poj2262-Goldbach's Conjecture

2013-06-06 13:31:33

#### Poj_2262 Goldbach's Conjecture(筛法求素数)

2016-12-12 21:41:13

#### LightOJ 1259 - Goldbachs Conjecture （分解偶数为两个素数之和）

2016-03-08 17:43:06

#### POJ2909_Goldbach's Conjecture【素数判断】【水题】

2014-09-24 09:01:44

#### LightOJ 1259 Goldbachs Conjecture(证明哥德巴赫猜想)

2016-05-29 11:45:23

#### LightOJ - 1259 Goldbachs Conjecture

2015-07-09 20:36:21

#### LightOJ 1259 Goldbachs Conjecture（数论）

2016-02-25 20:32:36

#### POJ 2262 Goldbach's Conjecture(哥德巴赫猜想)

2015-08-13 22:29:33

## 不良信息举报

K - Goldbach's Conjecture解题报告