机器学习+周志华+第五章习题+解决异或问题的单层RBF神经网络

本文探讨了如何运用单层RBF神经网络解决经典的异或问题。基于公式5.18和5.19,通过RBF网络的高维映射特性,将原本非线性可分的异或数据转化为线性可分状态,从而实现有效求解。内容涉及到RBF网络的结构及其在MATLAB环境下的实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

5.7根据式(5.18)和(5.19),试构造一个能解决异或问题的单层RBF神经网络。

RBF(Radial Basis Function,径向基函数)网络,是一种单隐层前馈神经网络,它使用径向基函数作为隐层神经元激活函数,而输出层则是对隐层神经元输出的线性组合。

RBF隐层相当于把输入映射到一个更高维空间,使得不可分的数据线性可分。

对于异或问题,构造数据:

异或真值表
X1 X2 X3
0 0 0
0 1 1
1 0 1
1 1 0


设计RBF网:
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值