prometheus9mon
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
78、并行编程与多组学数据分类中的数据分析策略
本文探讨了并行编程在多发性硬化症(MS)模型中的应用以及分层相对表达分析在多组学数据分类中的创新方法。通过OpenMP和MPI实现模型的并行化,显著提升了计算效率,其中OMP在6线程下加速比接近3.5;基于Sobol方法的敏感性分析揭示了影响少突胶质细胞破坏的关键参数。针对多组学数据分类,提出了一种新的相对多测试分类树(RMCT)方法,结合水平、分层与混合集成策略,在胶质母细胞瘤和肉瘤数据集上分别达到85%和81%的准确率,优于传统方法。研究展示了高性能计算与可解释机器学习在生物医学数据分析中的潜力。原创 2025-09-27 10:14:55 · 31 阅读 · 0 评论 -
77、用并行编程和物理信息神经网络解决生物医学模型问题
本文探讨了利用物理信息神经网络(PINNs)替代FitzHugh-Nagumo电生理模型的方法,通过引入数据驱动约束和关键区域强化策略,在不同输入参数条件下实现了高精度近似求解。同时,针对多发性硬化症的两室微分方程模型,采用二阶Sobol方法进行灵敏度分析,并结合OpenMP与MPI实现并行计算以提升效率。研究展示了PINNs在生物医学建模中的潜力以及并行编程在复杂系统仿真中的关键作用,为未来神经网络架构优化和模型并行化提供了方向。原创 2025-09-26 16:30:43 · 42 阅读 · 0 评论 -
76、用物理信息神经网络替代FitzHugh - Nagumo电生理模型
本文提出了一种使用物理信息神经网络(PINNs)替代FitzHugh-Nagumo(FHN)电生理模型的新方法,旨在解决传统数值求解在大规模模拟中的高计算成本问题。通过NVIDIA Modulus框架构建多层感知器网络,结合时间窗口推进和增加过渡区域点云密度等技术,有效应对模型非线性、尖锐过渡和参数分叉等挑战。实验结果表明,该方法在不同参数化场景下均能以低于1%的平均误差准确重现FHN模型的动态行为,显著提升计算效率并具备良好泛化能力,为电生理学和神经生理学的大规模模拟提供了高效、轻量级的解决方案。原创 2025-09-25 13:40:11 · 53 阅读 · 0 评论 -
75、迈向人类纳米级连接体:神经元形态格式、建模与存储需求估计
本文提出了一种面向人类纳米级连接体的神经元形态描述框架,包括完整的纳米级神经元形态参数集和新型数据格式(nN格式),并基于该格式构建了四种神经元几何模型:直线线框、增强线框、直线多边形和增强多边形模型。研究估算了不同模型下的全脑存储需求,发现几何模型在突触水平下显著优于体积模型,且更利于自动化处理与可视化。文章还讨论了未来在神经回路建模、高性能计算资源评估及多尺度脑图谱开发中的方向,为实现完整的人类大脑连接体提供了基础性支撑。原创 2025-09-24 15:19:07 · 21 阅读 · 0 评论 -
74、意大利长新冠叙述中的情感调查
本研究利用自然语言处理和情感分析方法,对意大利长新冠患者在叙事医学博客中的73篇叙述文本进行分析。通过VADER工具进行极性检测,发现大多数文本呈现消极情感;结合LDA主题建模提取出三个主要主题,均以疼痛、发烧、医生等关键词为主,且整体情感倾向为负面。研究指出文档级分析的局限性,建议未来采用句子或方面级别的情感分析、扩展数据集规模,并引入命名实体识别(NER)技术以深入挖掘患者情感与医疗实体之间的关联,为临床支持和健康干预提供更精准的洞察。原创 2025-09-23 13:34:12 · 44 阅读 · 0 评论 -
73、X射线CT扫描仪图像重建与意大利长新冠叙事情感分析
本文探讨了X射线CT扫描仪图像重建与意大利长新冠叙事情感分析两个领域的研究进展。在CT图像重建方面,提出了一种基于最大似然估计的迭代统计方法,结合FFT加速和几何转换,有效提升高噪声及低剂量条件下的图像质量,适用于飞焦点(FFS)技术带来的复杂数据重建。实验结果显示该方法显著降低MSE与NRMSE,具备临床应用潜力。在情感分析方面,利用VADER工具和LDA主题建模对意大利语长新冠博客文本进行分析,发现叙事普遍呈现负面情绪,反映患者身心困境;并通过半监督方式探索情感与主题的关联,为医疗心理支持提供数据驱动视原创 2025-09-22 15:34:14 · 34 阅读 · 0 评论 -
72、基于CNN的血管管腔量化与表面肌电信号手势分类研究
本研究探讨了基于卷积神经网络(CNN)的血管管腔量化方法及其在医学图像分析中的应用潜力,同时提出了一种基于张量训练与子空间分析(TT-SVD-TSA)的表面肌电信号(sEMG)手势分类新方法。该方法通过提取多线性特征并结合几何信息优化投影,显著提升了分类准确率,在人机交互、康复治疗和虚拟现实等领域具有广泛应用前景。实验结果显示,TT-SVD-TSA方法在36名受试者数据上达到92.5%的平均准确率,优于传统张量分解模型。尽管面临个体差异、实时性和复杂手势识别等挑战,未来可通过个性化建模、算法优化与多模态融合原创 2025-09-21 12:00:36 · 28 阅读 · 0 评论 -
71、基于CNN的3D图像中血管管腔量化方法
本文提出了一种基于卷积神经网络(CNN)的三维图像中血管管腔量化方法,通过构建六参数图像模型并利用CNN回归血管横截面的管腔参数。该方法在真实流动模型和临床CTA数据上验证,展现出速度快、精度高和鲁棒性强的优势,相比传统最小二乘法效率提升显著,平均绝对误差低于0.13 mm,实现亚像素级精度。该技术可广泛应用于血管诊断辅助、图像自动标注和手术规划,具有重要的临床应用价值。原创 2025-09-20 16:13:14 · 37 阅读 · 0 评论 -
70、扩散磁共振成像的相位校正与噪声到噪声去噪
本文介绍了一种基于神经网络的相位校正方法Phase Shifter和Noise2Noise去噪方法在扩散磁共振成像(dMRI)中的应用。通过合成数据训练,Phase Shifter在相位校正速度和准确性上均优于传统多项式拟合方法,并支持后续的噪声到噪声去噪。实验结果表明,该方法显著提升图像质量,但在背景噪声估计和适用信噪比范围方面仍需进一步研究。未来工作将聚焦于优化网络设计、扩展实际应用场景及量化对扩散参数的影响。原创 2025-09-19 10:25:21 · 24 阅读 · 0 评论 -
69、癌症热疗中毛细血管床及扩散磁共振成像相关研究
本博客探讨了癌症热疗中毛细血管床结构与血液流速对治疗效果的影响,通过蒙特卡罗模拟分析了不同因素对肿瘤和健康组织温度分布的作用,指出毛细血管数量是影响模型不确定性的关键因素。同时,研究提出基于神经网络的相位校正与去噪方法,利用Phase Shifter和N2N Denoiser网络提升扩散磁共振成像质量,有效解决低信噪比问题。文章还讨论了技术的潜在应用、局限性及未来优化方向,为癌症热疗规划与医学影像处理提供了理论支持与新思路。原创 2025-09-18 13:33:00 · 14 阅读 · 0 评论 -
68、磁热疗癌症治疗中毛细血管床的影响
本文研究了磁热疗在癌症治疗中受毛细血管床影响的热动力学过程,基于多孔介质理论建立了包含磁性纳米粒子产热、血流对流和组织代谢的生物热数学模型。采用有限差分法(FDM)结合时间前向中心空间(FTCS)格式进行数值求解,并利用蒙特卡罗方法对毛细血管数量、角度及血流速度等不确定参数进行量化分析。通过10000次模拟评估了不同不确定性场景下肿瘤与健康组织的温度分布,结果表明热疗具有良好的靶向性和一定鲁棒性。为提升计算效率,采用OpenMP实现并行化加速。研究表明,考虑毛细血管床的不确定性有助于更准确地评估热疗效果,为原创 2025-09-17 15:17:07 · 25 阅读 · 0 评论 -
67、基于自编码器的步态运动捕捉数据异常检测研究
本文研究基于自编码器的步态运动捕捉数据异常检测方法,采用去噪密集低维和稀疏高维两种自编码器策略,在Motek CAREN Extended虚拟现实环境中采集创新数据集。通过训练仅包含正常行走数据的自编码器模型,利用重建误差进行异常识别,并在包含视频与音频干扰的场景中测试性能。实验结果表明,稀疏高维自编码器在处理较长子序列(100个时间点)时表现最优,平均精度(AP)达0.462,ROC-AUC为0.708。研究还分析了不同网络结构、噪声注入及个体差异对检测效果的影响,验证了自编码器在步态异常检测中的可行性与原创 2025-09-16 12:02:54 · 25 阅读 · 0 评论 -
66、脑网络功能连接与运动捕捉数据异常检测研究
本文研究了脑网络功能连接与运动捕捉数据异常检测的理论与方法。基于EEG和fNIRS数据,构建42×42功能连接矩阵,分析小世界指数、全局效率、聚类系数和特征路径长度等拓扑特征,并通过NBS进行边分析,揭示了HbO功能连接增强的子网络。在运动捕捉方面,采用自编码器对步态序列进行异常检测,评估其性能并探讨影响因素。研究进一步探讨了两种技术在神经疾病诊断、康复评估和运动员训练中的互补性与融合潜力,提出多模态融合、算法优化和个性化医疗等未来方向,为神经科学与生物医学应用提供了重要支持。原创 2025-09-15 15:14:22 · 19 阅读 · 0 评论 -
65、3D B样条函数并行积分与静息态脑功能连接分析
本博文介绍了3D B样条函数在并行积分中的优化方法,结合和因子分解算法与迹理论调度模型,显著降低了计算复杂度至$O(p^7)$,并在CPU/GPU平台上评估了性能表现。同时,研究还探讨了静息态下EEG与fNIRS的多模态脑功能连接分析,通过源重建、数据映射及图论方法揭示了大脑网络的小世界拓扑特性,比较了电生理与血流动力学信号在网络层面的异同,为理解大脑功能组织提供了新视角,并展望了其在神经系统疾病诊断与多模态融合中的应用前景。原创 2025-09-14 09:33:16 · 19 阅读 · 0 评论 -
64、工业过程的机器学习主动控制与三维B样条函数并行积分算法
本文探讨了两种在工业计算中具有重要应用价值的技术:基于机器学习的工业过程主动控制方法与三维B样条函数的并行积分算法。前者通过虚拟传感器和深度时间聚类(DTC)模型实现天然气开采过程中水锥问题的前瞻性控制,提升生产效率并降低运营成本;后者针对等几何有限元方法中的质量矩阵组装,提出基于GPU的并发积分算法,显著提高三维B样条函数积分的计算效率。文章还分析了两种技术的优势、应用拓展及未来发展方向,展示了其在智能工业控制与高性能工程计算中的广阔前景。原创 2025-09-13 15:46:04 · 27 阅读 · 0 评论 -
63、基于机器学习的工业过程主动控制
本文提出了一种基于机器学习的工业过程主动控制新方法,结合物理与虚拟传感器数据,利用深度时间聚类(DTC)算法识别过程阶段,并由专家定义控制规则,实现人机协作的可解释性控制。该方法在地下气藏天然气生产中验证,显著减少了水产量和停机时间,提升了天然气产量与过程可靠性,具有广泛应用于化工、电力、制造等领域的潜力。原创 2025-09-12 15:24:56 · 19 阅读 · 0 评论 -
62、深度强化学习智能体在云资源管理中的解读与应用
本文探讨了深度强化学习(DRL)智能体在云资源管理中的应用与可解释性分析。通过引入积分梯度(IG)方法,对DQN和PPO等算法驱动的智能体决策过程进行解读,揭示影响资源分配的关键指标如CPU利用率、虚拟机分配比和任务等待时间等。研究结合CloudSim Plus和Gym框架构建模拟环境,利用归因分析实现策略调试、特征选择优化及训练过程监控。案例分析展示了不同架构智能体在实际场景中的决策逻辑,结果表明IG方法能有效提升模型透明度与可信度,助力自动化云资源管理系统的开发与部署。原创 2025-09-11 09:28:40 · 21 阅读 · 0 评论 -
61、矩阵压缩与强化学习在资源管理中的应用
本文探讨了矩阵压缩技术在时空问题中的应用,通过分层结构和SVD分解实现拟线性复杂度的矩阵-向量乘法,并结合GMRES迭代求解器有效求解线性方程组。同时,研究了深度强化学习(DRL)在云资源管理中的应用,分析了DRL算法如DQN、DDQN和PPO在资源调度中的优势。针对DNN缺乏可解释性的问题,引入可解释人工智能(XAI)技术,特别是集成梯度(IG)方法,用于解释DRL代理的决策过程,提升策略透明度。实验结果表明,压缩求解器显著降低计算时间,而基于IG的归因分析有助于优化资源管理策略。未来工作包括预条件器设计原创 2025-09-10 14:59:32 · 15 阅读 · 0 评论 -
60、云资源使用的长期预测与对流扩散问题的时空求解
本文探讨了云资源使用的长期预测与对流扩散问题的时空求解方法。在云资源预测方面,采用XGBoost模型结合交叉验证技术,提升了预测精度与资源利用率,并提出了未来在LSTM、TCN等模型上的评估方向及多变量预测的探索。在对流扩散问题求解中,引入时空有限元方法,结合低秩矩阵压缩与截断SVD算法,实现了准线性计算成本的高效求解。文章还展望了两个领域的融合应用潜力,为科学计算与资源管理提供双向支持。原创 2025-09-09 16:14:02 · 15 阅读 · 0 评论 -
59、高性能计算中云资源使用的长期预测
本文提出了一种基于异常检测和机器学习的长期云资源使用预测方法,旨在优化高性能计算(HPC)应用中的资源分配与成本控制。系统采用XGBoost模型进行预测,并结合Isolation Forest进行异常检测,通过实际生产数据验证了其在处理资源消耗突变方面的优越性。评估结果显示,定期重新训练模型的方法(Method 8)在RMSE、NRMSE和MAE等指标上表现最佳,显著优于传统统计方法。研究还探讨了数据质量、模型调优和异常处理策略等实际应用因素,为未来HPC云资源管理提供了可行的技术路径和发展方向。原创 2025-09-08 11:06:52 · 22 阅读 · 0 评论 -
58、对流主导扩散问题的快速求解方法
本文提出了一种针对对流主导扩散问题的快速求解方法,结合Petrov-Galerkin稳定化框架与人工神经网络技术。通过残差最小化确定任意扩散系数ε下的最优测试函数,并利用神经网络对不同ε对应的最优测试函数进行学习与逼近,实现在线高效计算。进一步地,分析了最优测试函数的全局性质,基于Dirichlet原理将其局部化,构建具有稀疏结构的系统矩阵,显著降低计算成本。该方法在一维问题中验证有效,未来可扩展至高维情形。原创 2025-09-07 14:45:03 · 20 阅读 · 0 评论 -
57、基于记忆的蒙特卡罗积分与对流主导扩散问题的快速求解
本文探讨了基于记忆的蒙特卡罗积分方法在神经网络求解偏微分方程中的应用,重点解决了对流主导扩散问题的数值不稳定性与训练效率低下的挑战。通过引入递归加权的积分与梯度估计,有效降低了蒙特卡罗噪声,提升了优化过程的稳定性。结合残差最小化框架与佩特罗夫-伽辽金方法,利用神经网络离线学习最优测试函数,并采用局部支持函数近似以降低计算成本。文章还分析了该方法与SGDM的联系与区别,展示了其在提升收敛性与数值精度方面的潜力,为复杂科学计算问题提供了高效、稳定的求解新思路。原创 2025-09-06 09:56:03 · 15 阅读 · 0 评论 -
56、集成AI加速器的化学混合模拟及基于神经网络的蒙特卡罗积分方法
本文介绍了两种基于人工智能的高性能计算方法:一是集成AI加速器的化学混合模拟,通过引入基于变分自编码器(VAE)的AI监督机制,在CFD模拟中实现高效收敛与显著加速;二是基于神经网络的蒙特卡罗积分方法,提出一种内存增强的积分策略,有效平衡了过拟合风险、计算成本与收敛诊断难度。实验结果表明,AI加速模拟在相同几何条件下可实现近10倍加速,且预测精度高;而改进的蒙特卡罗方法在求解PDEs时展现出优良的扩展性与训练效率。两种方法为科学计算与工程仿真提供了创新解决方案。原创 2025-09-05 12:58:11 · 14 阅读 · 0 评论 -
55、细胞内物质运输模拟与化学混合模拟的AI加速研究
本文探讨了人工智能在细胞内物质运输模拟与化学混合模拟中的加速应用。在细胞内物质运输方面,结合IGA、DL和PDE-CO方法,研究复杂神经元内的物质传输,并通过PGNN与IGA模拟对比验证预测效果;在化学混合模拟中,提出AI监督器架构,集成AI模型与CFD求解器,显著提升模拟效率,执行时间最多减少9倍,准确率超90%。未来方向包括模型耦合、实验验证及AI在更复杂场景中的拓展应用。原创 2025-09-04 10:29:40 · 33 阅读 · 0 评论 -
54、多领域模拟技术:从N体问题到神经元内物质运输
本文探讨了多领域模拟技术的应用与发展,重点介绍了基于Actor模型的N体问题可扩展模拟方法和结合等几何分析(IGA)与深度学习的神经元内物质运输模拟方法。前者通过聚类优化提升精度与性能,后者利用IGA保证几何精度并借助深度学习实现高效替代建模。文章对比了两种技术的核心算法、性能表现与挑战,并提出融合思路以构建通用模拟框架,展望其在天文学、神经科学及多物理场耦合中的潜在应用。原创 2025-09-03 15:12:36 · 16 阅读 · 0 评论 -
53、基于Actor模型的可扩展N体问题模拟
本文探讨了基于Actor模型的N体问题模拟方法,介绍了三种不同的Actor实现模型:问题驱动、计算驱动和有限通信模型。问题驱动模型精度高但可扩展性差;计算驱动模型通过聚类与质心近似提升性能,但可能引入误差;有限通信模型通过限制通信范围显著提高可扩展性,适用于大规模系统。文章分析了各模型的复杂度、通信方式及误差特性,并比较其优劣,为天体物理、分子动力学等领域的高性能模拟提供了可行的并发解决方案。原创 2025-09-02 09:46:30 · 18 阅读 · 0 评论 -
52、高维分类数据下改进组套索算法的研究与应用
本文研究了一种改进的高维分类数据处理方法——PDMR算法,通过合并因子水平,在几乎不损失预测精度的前提下显著降低模型维度,提升可解释性。理论分析表明PDMR在高维情况下具有一致筛选性,实验结果显示其在多种数据集上优于组套索、组MCP、SCOPE和随机森林等竞争算法,尤其在模型简洁性和计算效率方面表现突出。文章还探讨了该算法在生物信息学、金融风险评估和市场营销等领域的应用前景,并提出了未来拓展方向,如推广到广义线性模型和优化组套索权重。原创 2025-09-01 11:16:32 · 14 阅读 · 0 评论 -
51、高维分类数据下改进的组套索算法
本文提出了一种针对高维分类数据的改进稀疏建模方法——PDMR(Plain DMR)算法。该算法通过两步法结合组套索与信息准则,在筛选阶段利用加权组套索降低维度,在选择阶段通过对因子水平进行层次聚类并应用广义信息准则选择最优模型,实现了因子的删除与水平合并,提升了模型的可解释性与预测性能。理论分析证明PDMR在高维情况下具有部分一致性,能够在不丢失真实模型的情况下实现有效筛选。数值实验表明,PDMR在预测误差、模型稀疏性和计算效率方面均优于现有方法如DMR和SCOPE,并已实现于R包DMRnet中,适用于线性原创 2025-08-31 15:18:18 · 15 阅读 · 0 评论 -
50、磁层动力学与航天器充电的耦合分析
本文介绍了基于CoToCoA框架实现的磁层动力学与航天器充电的耦合数值分析方法。通过请求者-工作器模型,结合MPI轮询机制和远程内存访问技术,实现了磁流体动力学(MHD)模拟与航天器充电(SC)计算的异步协同。详细阐述了初始化、数据交换、并行执行等关键步骤,并通过实际案例验证了模型对航天器电位瞬态行为的模拟能力。性能评估表明,在合理配置下MHD与SC计算负载可达到平衡,且耦合开销极小。研究为未来空间环境预测平台的构建提供了重要基础,同时提出了SC并行化、模型精度提升及多物理场耦合等方向作为未来发展路径。原创 2025-08-30 09:32:18 · 30 阅读 · 0 评论 -
49、数据驱动方法的粘弹性求解器与磁层动力学和航天器充电现象的耦合数值分析
本文介绍了两种先进的数值模拟技术:基于GPU的数据驱动粘弹性求解器和用于磁层动力学与航天器充电耦合分析的CoToCoA框架。前者通过算法优化显著提升大规模地壳模型计算效率,后者实现多物理场跨尺度耦合模拟。两者在计算资源利用和物理建模上具有互补性,可应用于地震研究、航天器安全评估和地球物理勘探等领域,展现出广阔的跨学科应用前景。原创 2025-08-29 13:34:48 · 27 阅读 · 0 评论 -
48、基于数据驱动方法的粘弹性求解器技术解析
本文介绍了一种基于数据驱动方法的粘弹性求解器,结合DMD与二阶Adams-Bashforth方法预测位移趋势,提升初始解精度。通过三级多重网格预条件器与自适应共轭梯度法加速收敛,并在GPU上采用随机压缩和GSpMV技术优化内存与计算效率。实验表明,该求解器相较传统方法显著减少迭代次数,实现最高191倍加速,适用于大规模地壳变形模拟等科学计算场景。原创 2025-08-28 16:02:23 · 20 阅读 · 0 评论 -
47、探索预测学生成功的反事实解释及3D粘弹性地壳变形分析求解器的开发
本文探讨了两个跨学科的研究方向:一是利用机器学习模型和反事实解释方法预测学生课程成败,其中LGBM分类器表现最优,并通过DiCE生成可操作的反事实建议,经教育工作者用户研究验证其潜在应用价值;二是开发基于GPU的数据驱动多网格求解器,用于高效计算3D粘弹性地壳变形的格林函数,相比传统方法实现8.6倍加速,并成功应用于南海海槽地震的同震滑动反演。两项研究分别在教育智能与地球物理领域提供了创新性解决方案,展现了高性能计算与机器学习在实际问题中的广阔应用前景。原创 2025-08-27 15:58:06 · 17 阅读 · 0 评论 -
46、氢终端金刚石的吸附、热稳定性及学生成功预测的反事实解释
本文探讨了氢终端金刚石的吸附特性、热稳定性及其在p型掺杂中的应用,分析了不同晶面的表面能与解吸活化能,并通过分子动力学模拟揭示其高温不稳定性。同时,研究采用机器学习模型预测学生课程成败,并引入多样化反事实解释(DiCE)提升模型可解释性,结合用户研究评估其在教育决策中的可行性。跨领域分析展示了材料科学与教育技术在可解释性与性能优化方面的共通挑战与未来方向。原创 2025-08-26 12:51:05 · 35 阅读 · 0 评论 -
45、文本到文本语言模型的关键词提取与生成及氢终止金刚石表面特性研究
本文探讨了文本到文本语言模型在关键词提取与生成(KEG)任务中的应用,评估了T5和mBART模型在学术和新闻文本上的性能,结果显示mT5-large在多数指标上表现优异且具备良好迁移能力。同时,研究了氢终止金刚石的表面特性,通过DFT计算分析其吸附性能、电子结构及热稳定性,发现(100)面最稳定,氢终止可形成浅受主能级实现p型导电,但高温下结构易恶化。最后提出未来在模型优化与金刚石热稳定性提升方面的研究方向。原创 2025-08-25 12:39:58 · 14 阅读 · 0 评论 -
44、基于心率的物联网可穿戴设备用户识别及关键词提取研究
本研究探讨了基于心率的物联网可穿戴设备用户识别方法,利用商业设备采集的心率数据作为生物识别特征,结合速度、海拔等上下文信息,通过过滤模块与miniROCKET等时间序列分类算法实现用户识别,在小规模用户集中准确率高达94%。同时,研究还探索了T5和mBART等生成式模型在科学论文关键词提取与生成中的应用,评估其跨领域迁移能力,结果表明T5在新闻故事标签任务中表现更优。研究为可穿戴设备安全认证和学术文本信息检索提供了新思路。原创 2025-08-24 14:13:42 · 16 阅读 · 0 评论 -
43、大数据集最近点对问题与心率生物识别算法研究
本文研究了大数据集下的最近点对问题与心率生物识别算法。针对传统算法在大规模数据中效率低的问题,提出基于指数桶排序和窗口技术的新算法,将复杂度从O(N log N)降低至O(N),显著提升计算效率,并在GIS、数据聚类和计算机视觉等领域具有广泛应用。同时,探索利用心率数据进行用户识别的可行性,结合miniROCKET等时间序列分类算法,在真实数据集上验证了心率作为生物特征的潜力,并强调上下文信息对识别性能的提升作用。最后,文章总结了两种算法的优势与挑战,提出了未来在算法优化与融合应用方向的研究展望。原创 2025-08-23 11:07:32 · 21 阅读 · 0 评论 -
42、高性能计算系统中人工智能应用的效率分析:以K-Means为例
本文研究了高性能计算(HPC)系统中人工智能应用的效率分析,以K-Means聚类算法为例,验证了PAS2P工具在AI领域的适用性。通过插桩与阶段建模,PAS2P实现了平均4.3%的执行时间预测误差,并成功将应用行为抽象为稳定阶段结构。研究发现,尽管不同数据集下阶段权重变化,但阶段结构保持一致,且各阶段效率差异显著(第一阶段99.93%,第四阶段仅7.28%)。文章提出了基于阶段效率和全局影响的优化策略,为AI应用在HPC环境下的性能优化提供了可操作的分析框架和改进方向。原创 2025-08-22 15:26:38 · 21 阅读 · 0 评论 -
41、基于特征提取的机器学习方法在焦虑检测情感分析中的应用
本研究探讨了基于特征提取的机器学习方法在印尼语YouTube评论中进行焦虑情绪检测的应用。通过数据收集、预处理、特征提取和分类四个步骤,结合6种机器学习算法与4种特征提取方法,系统评估了不同组合在焦虑识别中的性能。实验结果表明,随机森林(RF)与计数向量(CV)的组合表现最佳,准确率达到98.4%,显著优于以往研究。研究还分析了各方法的优缺点,并提出了未来在优化算法、深度学习和多模态分析方面的改进方向。原创 2025-08-21 09:33:51 · 22 阅读 · 0 评论 -
40、基于GPU的距离相似度搜索中坐标和度量索引的优化与比较
本文比较了两种基于GPU的距离相似度搜索算法——基于坐标索引的GDS-Join和基于度量索引的COSS,分析了它们在不同数据集上的性能差异。通过引入内在维度(ID)作为关键指标,提出了一种启发式方法来确定索引维度数或参考点数k,并给出了根据n/keqn比值选择最优算法的准则:当n/keqn < 16时优先使用GDS-Join,否则选用COSS。实验表明,该策略能有效提升搜索效率,为大规模数据分析中的相似性搜索提供了实用的优化方案。原创 2025-08-20 10:43:22 · 23 阅读 · 0 评论 -
39、DeBERTNeXT:多模态假新闻检测框架
本文提出了一种新的多模态假新闻检测框架DeBERTNeXT,结合DeBERTa和ConvNeXT分别处理文本与图像特征,在Fakeddit、Politifact和Gossipcop三个数据集上实现了优于现有模型的性能。该模型通过高效的特征提取与拼接分类机制,在准确率、精确率、召回率和F1分数等指标上均取得领先结果,并具备良好的可扩展性。未来计划引入更多模态信息,优化特征融合方法,并拓展至医疗、金融等跨领域应用场景。原创 2025-08-19 09:33:02 · 34 阅读 · 0 评论
分享