递归实现:
给定n个元素集合,打印这个集合所有可能的排列。例如给定{a,b,c},它的所有排列为{(a, b, c) (a, c, b) (b, a, c) (b, c, a )(c, a, b)(c, b, a)}。显然有n! 种
分析: 1. a 跟{b, c }排列之后:a +{b,c}的排列
2. b 跟{a, c}排列之后: b+{a,c}的排列
3. c 跟{a, b}排列之后: c+{a,b}的排列
对于n个元素的排列,只要我们解决了n-1元素的排列,这个问题就迎刃而解。
#include <stdio.h>
#include "mylib.h"
/*产生list[i]到list[n]的所有有序数列(permutations)*/
void perm(char *list, int i, int n)
{
int j, temp;
static k=1;
if(i == n){
printf("%d:", k++);
for(j = 0; j <= n; j++){
printf("%c", list[j]);
}
putchar('\n');
}
else{
for(j = i; j <= n; j++){
SWAP(list[i], list[j], temp); //交换list[i]和list[j]
perm(list, i+1, n); //产生list[i+1]到list[n]的有序数列
SWAP(list[i], list[j], temp); //还原交换,以便下次交换其它两个
}
}
}
int main()
{
char list[] = {'a', 'b', 'c', 'd'};
perm(list, 0, sizeof(list) - 1);
return 0;
}
附下头文件(主要为了方便以后用)mylib.h
#ifndef _MYLIB_
#define _MYLIB_
/*用宏的形式可以对任意类型都可以*/
#define SWAP(x,y,t) ((t) = (x), (x) = (y), (y) = (t))
#endif