hdu 2013多校2warmup2

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <vector>
using namespace std;
int N,M;
int result[101]; //记录V2中的点匹配的点的编号
bool state [1010]; //记录V2中的每个点是否被搜索过
int p1[1010][2],p2[1010][2];
vector<int> g[1010]; //记录骨牌i的连通骨牌牌号


bool find(int a)
{
	for (int i = 1; i <= g[i].size(); i++)
	{
		int v=g[a][i];
		if (!state[v]) //如果节点i与a相邻并且未被查找过
		{
			state[v] = true; //标记i为已查找过
			if (result[v] == 0|| find(result[v])) //如果i未在前一个匹配M中||i在匹配M中,但是从与i相邻的节点出发可以有增广路(成功则最终状态为一个未匹配点)(增广路即头尾都是前一匹配不饱和点result[i]=0
	    	{
				result[v] = a; //记录查找成功记录
				return true; //返回查找成功
			}
		}
	}
	return false;
}

bool judge(int a,int b) //判断骨牌a和骨牌b连通
{
    if(p1[a][0]==p2[b][0]&&p1[a][1]==p2[b][1])
    {
        return true;
    }
    if(p1[a][0]==p2[b][0]&&p1[a][1]==p2[b][1]+1)
    {
        return true;
    }
    if(p1[a][0]+1==p2[b][0]&&p1[a][1]==p2[b][1])
    {
        return true;
    }
    if(p1[a][0]+1==p2[b][0]&&p1[a][1]==p2[b][1]+1)
    {
        return true;
    }
    return false;
}

void build()
{
    int i,j;
    for(i=1; i<=N; i++)
    {
        for(j=1; j<=M; j++)
        {
            if(judge(i,j))
            {
                g[i].push_back(j); //比用data[x][y]记录更快,find()函数内循环次数不超过2,用data[x][y]要遍历M次
            }
        }
    }
}


int main()
{
    int i,j;
    while(scanf("%d %d",&N,&M)==2,(N+M))
    {
        for(i=1; i<=N; i++)
        {
            scanf("%d %d",&p1[i][0],&p1[i][1]);
            g[i].clear();
        }
        for(i=1; i<=M; i++)
        {
            scanf("%d %d",&p2[i][0].x,&p2[i][1]);
        }
        build();
		int ans=0;
		for (i = 1; i <= N; i++)
		{
			memset(state,0,sizeof(state)); //清空上次搜索时的标记
			if (find(i)) ans++; //从节点i尝试扩展
		}
		printf("%d\n",N+M-ans);
	}
	return 0;
}


用匈牙利算法算最大匹配数(边集)(最小點覆盖(点集))
(无向图)

然后利用 二分图最大独立集=顶点数-二分图最大匹配

算出最大独立点集  一个骨牌看成一个顶点 顶点互不相连则骨牌相互不重叠


复习一下匈牙利算法


匈牙利算法就是同过不断的寻找增广轨实现的。很明显如果二分图的两部分点分别为n和m,那么最大匹配的数目应该小于等于MIN(n,m);因此我们可以枚举任第一部分(二部分也可以)里的每一个点,我们从每个点出发寻找增广轨,最后吧第一部分的点找完以后,就找到了最大匹配的数目,当然我们也可以通过记录找出这些边。


 最大独立集是指求一个二分图中最大的一个点集,该点集内的点互不相连。
 最小顶点覆盖是指在二分图中,用最少的点,让所有的边至少和一个点有关联。
最小路径覆盖是指一个不含圈的有向图G中,G的一个路径覆盖是一个其结点不相交的
路径集合P,图中的每一个结点仅包含于P中的某一条路径。路径可以从任意结点开始和结束,且长度也为任意值,包括0


二分图中的最大匹配数=最小点覆盖数
最小点覆盖:假如选了一个点就相当于覆盖了以它为端点的所有边,你需要选择最少的点来覆盖所有的边。


最小路径覆盖=最小路径覆盖=|G|-最大匹配数


 在一个N*N的有向图中,路径覆盖就是在图中找一些路经,使之覆盖了图中的所有顶点,
 且任何一个顶点有且只有一条路径与之关联;(如果把这些路径中的每条路径从它的起始点走到它的终点,
 那么恰好可以经过图中的每个顶点一次且仅一次);如果不考虑图中存在回路,那么每条路径就是一个弱连通子集.


二分图最大独立集=顶点数-二分图最大匹配
独立集:图中任意两个顶点都不相连的顶点集合。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值