puluter

一个OIer的博客

倍增

][TOC]

例子

快速幂、 斐波那契数列、 RMQ、 树上倍增


RMQ 区间最值查询

*令A[i]存储我们要求最值的数列,F[i][j]表示从第i个位置开始,往后的2^j个数字中,最大的数字是什么
*我们对j从小到大枚举。每次处理.f[i][j]的时候,f[i][0~j−1]都已经处理好了
*因为j最大到logn,所以预处理的复杂度为O(nlogn)


状态转移方程:

f[i][j]=max(f[i][j−1],f[i+2^(j−1)][j−1])

↑ eg. f[5][3]=max(f[5][2],f[9][2]) (f[5][2]是5到9,f[9][2]是9到13)


void init_rmq (int n){
    for(int i=1;i<=n;i++)
        f[i][0]=a[i];
    for(int j=1;(1<<j)<n;++j)
        for(int i=1;i<=n;++i)
            if(i+(1<<j)-1<=n)
                f[i][j]=max(f[i][j-1],
                            f[i+(1<<j-1)][j-1]);
}

int query_rmq(int i,int j){
    int k = log(j-i+1) / log(2);
    return max(f[i][k],f[j-(1<<k)+1][k]);
}

倍增LCA

令father[i][j]记录编号为i的点,往上蹦2^j次的父亲

状态转移方程:

f[i][j]=f[f[i][j-1][j-1]]
注意!!!!!!!!!!数组要开两倍空间!!!!!无向边!!!

初始状态:f[i][0]=a[i-1];
void init_lca (int n){
    for(int j=1;(1<<j)<=n;++j)
        for(int i=1;i<=n;++i)
            if(f[i][j]!=-1)
                f[i][j]=f[f[i][j-1]][j-1];
}

int query_lca(int i,int j){
    int k = log(j-i+1) / log(2);
    return max(f[i][k],f[j-(1<<k)+1][k]);
}
阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/puluter/article/details/52373443
文章标签: 倍增
个人分类: OI
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

不良信息举报

倍增

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭