bzoj2301[HAOI2011]Problem b

Description

对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。

Input

第一行一个整数n,接下来n行每行五个整数,分别表示a、b、c、d、k

Output

共n行,每行一个整数表示满足要求的数对(x,y)的个数

Sample Input

2

2 5 1 5 1

1 5 1 5 2

Sample Output

14

3

HINT

100%的数据满足:1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000
想法:
莫比乌斯反演+分块

#include <cstdio>
#include <cstring>
#include <iostream>
#define min(a,b) (((a)<(b))?(a):(b))
#define ll long long
using namespace std;
const ll maxn=50000;
ll a,b,c,d,k,t,x,i,j,ans,prime[maxn+1],mu[maxn+1],s[maxn+1];
bool bz[maxn+1];
ll get(ll n,ll m){
    ll t;
    if (n>m){
        t=n,n=m,m=t;
    }
    n/=k,m/=k;
    ll j,i=1,sum=0;
    while (i<=n){
        j=min(n/(n/i),m/(m/i));
        sum+=(s[j]-s[i-1])*(n/i)*(m/i);
        i=j+1;
    }
    return sum;
}
int main(){
    freopen("a.in","r",stdin);
    memset(bz,true,sizeof(bz));
    s[1]=mu[1]=1;
    for (i=2;i<=maxn;i++){
        if (bz[i]){
            prime[++prime[0]]=i;
            mu[i]=-1;           
        }
        for (j=1;j<=prime[0];j++){
            if (i>maxn/prime[j]) break;
            bz[prime[j]*i]=false;
            if (i%prime[j]==0){
                mu[i*prime[j]]=0;
                break;
            }
            mu[i*prime[j]]=-mu[i];
        }
        s[i]=s[i-1]+mu[i];
    }
    for (scanf("%lld",&t);t;t--){
        scanf("%lld%lld%lld%lld%lld",&a,&b,&c,&d,&k);
        x=get(b,d);
        ans=x;
        x=get(a-1,d);
        ans-=x;
        x=get(b,c-1);
        ans-=x;
        x=get(a-1,c-1);
        ans+=x;
        printf("%lld\n",ans);
    }
}
发布了151 篇原创文章 · 获赞 71 · 访问量 3万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览