Anaconda环境下安装imgaug

版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/pw1623/article/details/88683270

记录贴~

环境:Win10 64bit,Anaconda3,TensorFlow1.12.0,Python3.6

之前安装TensorFlow时,是在Anaconda下单独建的环境。现在打算在TensorFlow环境下安装imgaug。

一、安装前的准备

imgAug的GitHub链接:https://github.com/aleju/imgaug

根据GitHub上的安装指导,需依赖six,numpy,scipy,Shapely等等:

使用conda list命令,查看当前的TensorFlow环境下是否已有上述这些包,没有的安装上。

我自己的环境中,缺少opencv、scikit-image和Shapely。

二、缺啥补啥

  • 首先安装opencv。进入TensorFlow环境后,使用命令:
conda install -c https://conda.binstar.org/menpo opencv

即可安装。截图如下:

安装成功后,测试如下:

  • 接着安装scikit-image。使用命令:
conda install scikit-image

截图如下: 

安装完成后,可使用import skimage命令来测试,没有报错即为成功。 

  • 安装Shapely。

这一步还是挺重要的。本人第一次是按照网上的一些教程安装的,其中并没有提到Shapely这一步,直接使用pip install imgaug命令就能安装成功。但在我的电脑上一直报错,截图如下:

之后又头大的各种查资料,才发现是没有安装Shapely的原因。所以说GitHub上的说明还是要仔细看呀~

使用命令conda install -c conda-forge shapely安装,截图如下:

三、安装imgaug

终于在“缺啥补啥”吃货疗法结束后,可以迎接我们的主角啦~

使用命令pip install imgaug。截图如下:

成功~

展开阅读全文

使用Anaconda安装python环境

01-24

<p>rn <br />rn</p>rn<p>rn 20周年限定:唐宇迪老师一卡通!<span style="color:#337FE5;">可学唐宇迪博士全部课程</span>,仅售799元(原价10374元),<span style="color:#E53333;">还送漫威授权机械键盘+CSDN 20周年限量版T恤+智能编程助手!</span> rn</p>rn<p>rn 点此链接购买:rn</p>rn<table>rn <tbody>rn <tr>rn <td>rn <a href="https://edu.csdn.net/topic/teachercard?utm_source=jsk20xqy" target="_blank"><span style="color:#337FE5;">https://edu.csdn.net/topic/teachercard?utm_source=jsk20xqy</span></a> rn </td>rn </tr>rn </tbody>rn</table>rn<p>rn <br />rn</p>rn购买课程后,请扫码进入学习群<span style="font-family:&quot;">,获取唐宇迪老师答疑</span> rn<div>rn <img src="https://img-bss.csdn.net/201908070344327835.jpg" alt="" /> rn</div>rn<p>rn <br />rn</p>rn<p>rn Python数据分析与机器学习实战教程,该课程精心挑选真实的数据集为案例,通过python数据科学库numpy,pandas,matplot结合机器学习库scikit-learn完成一些列的机器学习案例。课程以实战为基础,所有课时都结合代码演示如何使用这些python库来完成一个真实的数据案例。算法与项目相结合,选择经典kaggle项目,从数据预处理开始一步步代码实战带大家入门机器学习。学完该课程即可:rn1.掌握Python数据科学工具包,包括矩阵数据处理与可视化展示。rn2.掌握机器学习算法原理推导,从数学上理解算法是怎么来的以及其中涉及的细节。rn3.掌握每一个算法所涉及的参数,详解其中每一步对结果的影响。rn4.熟练使用Python进行建模实战,基于真实数据集展开分析,一步步完成整个建模实战任务。rn</p>

没有更多推荐了,返回首页