Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting
摘要许多实际应用需要对长序列时间序列进行预测,例如耗电量计划。 长序列时间序列预测(LSTF)需要模型的高预测能力,即高效精确地捕获输出和输入之间的长期依赖关系的能力。 最近的研究表明,Transformer具有提高预测能力的潜力。但是,Transformer有几个严重的问题,使其无法直接应用于LSTF,包括二次时间复杂度,高内存使用率,以及编码器-解码器体系结构的局限性。为了解决这些问题,我们为LSTF设计了一个有效的基于Transformer的模型,称为Informer,具有三个独特的特..







