LangChain:如何高效管理 LLM 聊天历史记录?

LangChain 团队发布了一篇关于使用 Dragonfly DB 来有效管理 LangChain 应用程序聊天历史记录的教程。

该教程旨在解决用户在使用 LangChain 应用程序时普遍遇到的一个问题:如何高效地管理聊天历史记录。

LangChain 团队在推文中强调了 Dragonfly DB 在管理聊天历史记录中的重要性,并提供了相关教程链接,帮助用户更好地理解和使用 Dragonfly DB。

引言

在快速发展的软件开发领域,为实时 AI 驱动的应用程序(如聊天机器人)优化性能是一项重大挑战。大型语言模型(LLMs)是许多当今高级聊天机器人的核心,但它们本质上是无状态的,因此需要强大的机制来高效管理聊天上下文和会话数据。虽然传统数据库(如 Postgres)能够存储聊天记录,但添加一个具有快速访问速度和多功能数据结构的缓存层对于提高应用程序性能至关重要。

Dragonfly 是一个现代的、多线程的、兼容 Redis 的高性能内存数据存储解决方案,非常适合用于缓存聊天机器人上下文和会话数据。本文探讨了如何集成 Dragonfly 来大幅提升使用 LangChain 构建的聊天机器人的性能,实现对最近聊天会话的快速访问,并确保对话的连续性。所有代码片段可在 dragonfly-examples 仓库中找到。本文将使用 LangChain 库的 Python 版本。


使用 FastAPI 和 LangChain 构建聊天机器人

LangChain 是一个强大的 AI 优先工具包,它简化了使用高级语言模型(如 OpenAI 提供的模型)来创建互动 LLM 应用程序的过程。通过抽象出与这些模型交互的复杂性,LangChain 使开发人员能够专注于优化用户体验和增强对话能力。

考虑一个用户发起对话的简单示例:

from langchain_openai import ChatOpenAI
from langchain_core.messages import HumanMessage

chat = ChatOpenAI(model=MODEL_NAME, temperature=0.2)
chat.invoke(
    [    
        HumanMessage(       
            content="My name is Joe. I would like to learn more about in-memory data stores!"        
        )    
    ]
)

# 内存数据存储是一种数据库管理系统,它将数据存储在计算机的主内存中,而不是在磁盘上。
# 这允许更快地访问数据,因为不需要从磁盘读取或写入数据。

在此场景中,LangChain 处理消息并利用 OpenAI 的 API 生成相关响应。尽管非常强大,但需要注意的是,像 OpenAI 这样的 LLM 本质上是无状态的。在处理初始提示并生成响应后,模型不会保留此交互的任何上下文。如果用户随后提出问题如“我的名字是什么,我想了解什么?”模型将无法回忆起之前的上下文。

这种无状态性在开发需要在多次交互中保持上下文的对话代理时会带来障碍,因为用户期望对话的连续性。如果没有额外层来管理对话上下文(或“状态”,“记忆”),聊天机器人可能会显得脱节,因为它无法识别过去的交互。

存储聊天会话

为了提供无缝和有吸引力的用户体验,必须实现一种机制,使聊天机器人能够记住之前的交互并保持上下文。一种方法是将我们的 LLM 交互包装为后端服务,使用传统数据库如 Postgres 来存储聊天会话和历史记录。

from sqlalchemy import Boolean, Column, ForeignKey, Integer, String
from sqlalchemy.orm import relationship

from database import Base

class ChatSession(Base):
    __tablename__ = "chat_sessions"    
    
    id = Column(Integer, primary_key=True)    
    llm_name = Column(String, nullable=False) 
       
    c
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值