以下是内容详情
本白皮书首先分析了大模型训练所需的数据类型,并从产业实践出发破解了对训练数据的常见迷思和误解。在上述基础上,本书进而对训练数据的质量和规模进行讨论,发现高质量数据应在实践中检验效果,而难以用前置的客观标准衡量。
同时,本书探讨了合成数据作为解决高质量训练数据供给不足的新方案,及其在大模型训练中的潜力。
在训练数据合规方面,针对模型训练的特点,本书提出顺应模型发展的数据治理思路。
最后,本书论述构建政府和社会力量协同的数据生态对满足大模型训练数据需求的重要性,并以阿里巴巴的实践为案例做说明和阐述。
\1. 训练数据对大模型发展的重要性
数据是支撑大模型发展的三大基石之一,对模型能力至关重要。
大模型所需数据与以往决策式人工智能不同,更注重知识性内容而非用户行为数据。
大模型训练数据主要分为预训练语料、对齐语料和领域知识,分别对应“广”、“齐”和“专”的特征。
\2. 训练数据的常见疑问和误解
大模型训练不依赖用户个人信息,对数据需求更偏向知识性内容。
中文语料短缺不是制约我国大模型发展的关键因素,但中式价值观类语料短缺是重要短板。
\3. 高质量数据的含义与作用
高质量数据可以提升模型的准确性和稳定性,降低幻觉概率。
高质量数据具有多样性,可以提升模型的鲁棒性和泛化能力。
高质量数据的标准存在不确定性,需要根据模型应用目的和训练效果动态判断。
\4. 合成数据作为解决训练数据供给不足的新方案
合成数据通过算法和数学模型创建,模拟真实数据分布,弥补真实数据不足。
合成数据具有全面性、多样性、经济高效和隐私保护等优点。
合成数据可用于预训练语料生成和多模态数据生成,提升模型对数据利用的可能性。
合成数据可提升对齐数据获取效率,增强模型安全性和可靠性,并保护用户隐私。
\5. 对大模型训练数据治理的思考
大模型训练数据使用特点:不依赖个人信息,对版权类语料的使用属于合理使用。
大模型训练数据合规治理之智:重视数据可及性,提升模型安全训练数据供给,应用新技术提升合规性和安全性。
\6. 政府与社会力量协同的训练数据生态
美国政府开放数据范围广,社会力量主导数据开发和利用,形成开源为主的高质量训练语料生态。
中国政府开放数据范围更广,但开放共享和开发利用程度不足,社会力量探索呈现“散点状”。
中国尚未形成对大模型提供有效供给的数据资源生态,中文语料、科研成果等高质量数据集开放程度低。
\7. 阿里巴巴集团在大模型训练与应用的探索
阿里巴巴集团整合优质中文语料和海外开源数据集,优化训练数据质量。
探索合成数据在电商场景的应用,实现LLM 与推荐系统结合,提升推荐效能和隐私保护。
\8. 以更开放和务实的方式解决高质量训练数据供给
促进数据要素市场化分工协同,政府开放数据,社会力量探索数据集构建方法。
制度设计要给技术发展预留空间,不要过多在输入端做管控,要给技术发展预留空间。
对有确定性、已经研究清楚的数据类型,要坚决促进利用,扫清制度障碍。
总结:
这份白皮书全面分析了大模型训练数据的重要性、挑战和解决方案,并提出了构建高质量数据要素体系的建议。它对于推动大模型技术发展和数据要素市场化改革具有重要的参考价值。
这份完整版的AI大模型训练数据白皮书已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
这份完整版的AI大模型训练数据白皮书已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】