Python面向对象高级编程-定制类

看到类似__slots__这种形如__xxx__的变量或者函数名就要注意,这些在Python中是有特殊用途的。

__slots__我们已经知道怎么用了,__len__()方法我们也知道是为了能让class作用于len()函数。

除此之外,Python的class中还有许多这样有特殊用途的函数,可以帮助我们定制类。

__str__

我们先定义一个Student类,打印一个实例:

>>> class Student(object):
...     def __init__(self,name):
...         self.name = name
...
>>> print(Student('jeff'))
<__main__.Student object at 0x00000215C3253550>
>>>

打印出<__main__.Student object at 0x00000215C3253550>,不好看:

怎么才能打印得好看呢?只需要定义好__str__()方法,返回一个好看的字符串就可以了:

>>> class Student(object):
...     def __init__(self,name):
...         self.name = name
...     def __str__(self):
...         return 'Student object (name:%s)'%self.name
...
>>> print(Student('jeff'))
Student object (name:jeff)

这样打印出来的实例,不但好看,而且容易看出实例内部的重要的数据。

但是细心的朋友会发现直接敲变量不用print,打印出来的实例还是不好看:

>>> print(Student('jeff'))
Student object (name:jeff)
>>> Student('jeff')
<__main__.Student object at 0x00000215C3253668>
>>>

这是因为直接显示变量调用的不是__str__(),而是__repr__(),两者的区别是__str__() 返回客户看到的字符串,而__repr__()返回程序开发者看到的字符串,也就是说,__repr__()返回程序开发者看到的字符串,也就是说,__repr__()为调试服务的。

解决方法是再定义一个__repr__()。但是通常__str__()和__repr__()代码都是一样的,所以,有个偷懒的写法:

>>> class Student(object):
...     def __init__(self,name):
...         self.name = name
...     def __str__(self):
...         return 'Student object (name:%s)'%self.name
...     __repr__ = __str__
...
>>> Student('jeff')
Student object (name:jeff)
>>> print(Student('jeff'))
Student object (name:jeff)

__iter__

如果一个类想被用于for...in循环,类似list或tuple那样,就必须实现一个__iter__()方法,该方法返回一个迭代对象,然后,Python的for循环就会不断调用该迭代对象的__next__()方法拿到循环的下一个值,知道遇到StopIteration错误时退出循环。

我们以斐波纳契数列为例,写一个Fib类,可以作用于for循环:

>>> class Fib(object):
...     def __init__(self):
...         self.a,self.b = 0,1#初始化两个计数器a,b
...     def __iter__(self):
...         return self#实例本身就是迭代对象,故返回自己
...     def __next__(self):
...         self.a,self.b = self.b,self.a+self.b#计算下一个值
...         if self.a>100:#退出循环的条件
...             raise StopIteration();
...         return self.a#返回下一个值
...


>>> for n in Fib():
...     print(n)
...
1
1
2
3
5
8
13
21
34
55
89

__getitem__

Fib实例虽然能作用于for循环,看起来和list有点像,但是,把它当作成list来使用还是不行,比如,取第5个元素:

>>> Fib()[5]
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: 'Fib' object does not support indexing

要表现得像list那样按照下标取出元素,需要实现__getitem__()方法:

>>> class Fib(object):
...     def __getitem__(self,n):
...         a,b = 1,1
...         for x in range(n):
...             a,b = b, a+b
...         return a
...
>>> f = Fib()
>>> f[0]
1
>>> f[1]
1
>>> f[3]
3
>>> f[1993]
235434257493510246824260437074635317094822688334657750873214842701351961547267074277332243683929222336969323849637267073416993709650534957016236357334774000452906876245577889683474303529134846625113500174659728956680664586090648469757302818067099585343721399417913518509437411158840528250284495191123916444964985026197018828011253502963355140817467522168781027272888893514726667372701372217794999740310285099976041617
>>> f[19]
6765
>>> f[100]
573147844013817084101

但是list有个神奇的切片方法:

>>> list(range(100))[5:10]
[5, 6, 7, 8, 9]
对于Fib却报错。
>>> f[100][5:10]
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: 'int' object is not subscriptable

原因时__getitem__()传入的参数可能是一个int,也可能是一个切片对象slice,所以要做判断:

>>> class Fib(object):
...     def __getitem__(self,n):
...         if isinstance(n,int):
...             a,b = 1,1
...             for x in range(n):
...                 a,b = b, a+b
...             return a
...         if isinstance(n,slice):#n是切片
...             start = n.start
...             stop = n.stop
...             if start is None:
...                 start = 0
...             a,b = 1,1
...             L = []
...             for x in range(stop):
...                if x >= start:
...                     L.append(a)
...                a,b = b,a+b
...             return L
...
>>>
>>> f = Fib()
>>> f[0:5]
[1, 1, 2, 3, 5]
>>> f[:5]
[1, 1, 2, 3, 5]

但是没有对step参数做处理:

>>> f[:5]
[1, 1, 2, 3, 5]
>>> f[:5:2]
[1, 1, 2, 3, 5]

也没有对负数做处理,所以,要实现一个__getitem__()还是有很多工作要做的。

此外,如果把对象看成dict,__getitem__()的参数也可能是一个可以作key'的object,例如str。

与之对应的是__setitem__()方法,把对象视作list或dict来对集合赋值。最后,还有一个__delitem__()方法,用于删除某个元素。

总之,通过上面的方法,我们自己定义的类型表现得和Python自带的list、tuple、dict没有什么区别,这完全归功于动态语言的“鸭子类型”,不需要强制继承某个接口。

__getattr__

正常情况下,当我们调用类的方法或属性时,如果不存在,就会报错。

比如定义Student类:

>>> class Student(object):
...     def __init__(self):
...         self.name = 'jeff'
...

调用name属性,没问题,但是,调用不存在的score属性,就有问题了:

>>> s = Student()
>>> s.name
'jeff'
>>> s.score
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: 'Student' object has no attribute 'score'

错误信息很清楚地告诉我们,没有找到score这个attribute。

要避免这个错误,除了可以加上一个score属性外,Python还有另一个机制,那就是写一个__getattr__()方法,动态返回一个属性。修改如下:

>>> class Student(object):
...     def __init__(self):
...         self.name = 'jeff'
...     def __getattr__(self,attr):
...         if attr == 'score':
...             return 100
...
>>> s = Student()
>>> s.name
'jeff'
>>> s.score
100

返回函数也是完全可以的:

>>> class Student(object):
...     def __getattr__(self,attr):
...         if attr=='age':
...             return lambda:25
...
>>> s = Student()
>>> s.age()
25

注意,只有在没有找到属性的情况下,才调用__getattr__,已有的属性,比如name,不会在__getattr__中查找。

此外,注意到任意调用如s.abc都会返回None,这是因为我们定义的__getattr__默认返回的None。要让class只影响特定的几个属性,我们就要按照约定,抛出AttributeError的错误:

>>> class Student(object):
...     def __getattr__(self,attr):
...         if attr == 'agee':
...             return lambda:25
...         raise AttributeError('\'Student\' object has no attribute\'%s\''%attr)
...

这实际上可以把一个类的所有属性和方法调用全部动态化处理了,不需要任何特殊手段。

这种完全动态调动的特性有什么实际作用呢?作用就是,可以针对完全动态的情况作调用。

__call__

一个对象实例可以有自己的属性和方法,当沃恩调用实例方法时,我们用instance.method()来调用。能不能直接在实例本身上调用呢?在Python中,答案是肯定的。

任何类,只需要定义一个__call__()方法,就可以直接对实例进行调用。

亲,请看实例:

>>> class Student(object):
...     def __init__(self,name):
...         self.name = name
...     def __call__(self):
...         print('My name is %s.'%self.name)
...

>>> s= Student('jeff')
>>> s()
My name is jeff.

__call__()还可以定义参数。对实例进行直接调用就好比对一个函数进行调用一样,所以你完全把对象看成函数,把函数看成对象,因为这两者之间本来就没啥根本的区别。

如果你把对象看成函数,那么函数本身其实也可以在运行期动态创建出来,因为类的实例都是运行期创建出来,这么一来,我们就模糊了对象和函数的界限。

那么,怎么判断一个变量是对象还是函数呢?其实,更多的时候,我们需要判断一个对象是否能被调用,能被调用的对象就是一个Callable对象,比如函数和我们上面定义的带有__call__()的类实例:

>>> callable(Student('jeff'))
True
>>> callable(max)
True
>>> callable([1,2,3])
False
>>> callable('str')
False
通过callable()函数,我们就可以判断一个对象是否是“可调用”对象。












阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页