3-1一元多项式求导
题目链接:点击打开链接
设计函数求一元多项式的导数。(注:xn(n为整数)的一阶导数为n*xn-1。)
输入格式:以指数递降方式输入多项式非零项系数和指数(绝对值均为不超过1000的整数)。数字间以空格分隔。
输出格式:以与输入相同的格式输出导数多项式非零项的系数和指数。数字间以空格分隔,但结尾不能有多余空格。注意“零多项式”的指数和系数都是0,但是表示为“0 0”。
输入样例:3 4 -5 2 6 1 -2 0输出样例:
12 3 -10 1 6 0我的C++代码:
#include<iostream>
using namespace std;
int main()
{
int a, b;//a系数,b指数
int flag = 0;//计算输入的ab对数
do
{
cin >> a >> b;
flag++;
if (b != 0)
{
if (flag == 1)
printf("%d %d", a*b, b - 1);//输出第一对系数指数,后面没空格
else
printf(" %d %d", a*b, b - 1);//后面的系数指数
}
if (b == 0&&flag==1)//常数项多项式,b=0且只输入了一对系数指数
{
cout << "0 0";
}
} while (getchar() != '\n');//当没有回车,继续输入
//system("pause");
return 0;
}
=================分割线==============
3-2汉诺塔的非递归实现
我的c++程序:
// 3-2.cpp : 定义控制台应用程序的入口点。
//
#include "stdafx.h"
#include<iostream>
#include <stack>
using namespace std;
struct tower
{
tower();
tower(int n, char a, char b, char c) : _n(n), _x(a), _y(b), _z(c) {}
int _n; // 起始柱上盘子数量
char _x, _y, _z; // 保存柱子名称
}; //塔的数据类型
void hanoi(int n, char x, char y, char z)
{
std::stack<tower> sta;//栈
sta.push(tower(n, x, y, z));
while (!sta.empty())
{
tower q = sta.top();
sta.pop();
n = q._n;
x = q._x;
y = q._y;
z = q._z;
if (n == 1)
{
cout << q._x<< "->" << q._z << "\n";
}
else
{
sta.push(tower(n - 1, y, x, z));//压入顺序
sta.push(tower(1, x, y, z));
sta.push(tower(n - 1, x, z, y));
}
}
}
int _tmain(int argc, _TCHAR* argv[])
{
int n;//n起始柱上的盘数
cin >> n;
hanoi(n, 'a', 'b', 'c');//a起始柱,b借助柱,c目标柱
//system("pause");
return 0;
}