BZOJ 1621: [Usaco2008 Open]Roads Around The Farm分岔路口

Description

     约翰的N(1≤N≤1,000,000,000)只奶牛要出发去探索牧场四周的土地.她们将沿着一条路走,一直走到三岔路口(可以认为所有的路口都是这样的).这时候,这一群奶牛可能会分成两群,分别沿着接下来的两条路继续走.如果她们再次走到三岔路口,那么仍有可能继续分裂成两群继续走.    奶牛的分裂方式十分古怪:如果这一群奶牛可以精确地分成两部分,这两部分的牛数恰好相差K(1≤K≤1000),那么在三岔路口牛群就会分裂.否则,牛群不会分裂,她们都将在这里待下去,平静地吃草.    请计算,最终将会有多少群奶牛在平静地吃草.

Input

两个整数N和K.

Output

    最后的牛群数.

Sample Input

6 2

INPUT DETAILS:

There are 6 cows and the difference in group sizes is 2.


Sample Output

3

OUTPUT DETAILS:

There are 3 final groups (with 2, 1, and 3 cows in them).

6
/ \
2 4
/ \
1 3

HINT

   6只奶牛先分成2只和4只.4只奶牛又分成1只和3只.最后有三群奶牛.

题解

模拟。

#include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cmath>
using namespace std;
int n,m;
int doit(int x)
{
	if(x<=m+1||(x+m)&1) return 1;
	else return  doit((x+m)>>1)+doit((x-m)>>1);
}
int main()
{
	scanf("%d%d",&n,&m);
	printf("%d",doit(n));
	return 0;
}
相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页