hdu 1698 (区间替换区间更新)

In the game of DotA, Pudge’s meat hook is actually the most horrible thing for most of the heroes. The hook is made up of several consecutive metallic sticks which are of the same length.

Now Pudge wants to do some operations on the hook.

Let us number the consecutive metallic sticks of the hook from 1 to N. For each operation, Pudge can change the consecutive metallic sticks, numbered from X to Y, into cupreous sticks, silver sticks or golden sticks.
The total value of the hook is calculated as the sum of values of N metallic sticks. More precisely, the value for each kind of stick is calculated as follows:

For each cupreous stick, the value is 1.
For each silver stick, the value is 2.
For each golden stick, the value is 3.

Pudge wants to know the total value of the hook after performing the operations.
You may consider the original hook is made up of cupreous sticks.
Input
The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 10 cases.
For each case, the first line contains an integer N, 1<=N<=100,000, which is the number of the sticks of Pudge’s meat hook and the second line contains an integer Q, 0<=Q<=100,000, which is the number of the operations.
Next Q lines, each line contains three integers X, Y, 1<=X<=Y<=N, Z, 1<=Z<=3, which defines an operation: change the sticks numbered from X to Y into the metal kind Z, where Z=1 represents the cupreous kind, Z=2 represents the silver kind and Z=3 represents the golden kind.
Output
For each case, print a number in a line representing the total value of the hook after the operations. Use the format in the example.
Sample Input
1
10
2
1 5 2
5 9 3
Sample Output
Case 1: The total value of the hook is 24.

题解:

线段树区间替换区间更新

代码:

    #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;

#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1

const int maxn = 111111;
int h,w,n;
int col[maxn<<2];
int sum[maxn<<2];
void PushUp(int rt)
{
    sum[rt]=sum[rt<<1]+sum[rt<<1|1];
}
void PushDown(int rt,int m)
{
    if(col[rt])
    {
        col[rt<<1]=col[rt<<1|1]=col[rt];
        sum[rt<<1]=(m-(m>>1))*col[rt];
        sum[rt<<1|1]=(m>>1)*col[rt];
        col[rt]=0;
    }
}

void build(int l,int r,int rt)
{
    col[rt]=0;
    sum[rt]=1;
    if(l==r) return;
    int m = (l+r)>>1;
    build(lson);
    build(rson);
    PushUp(rt);
}

void Update(int L,int R,int c,int l,int r,int rt)
{
    if(L <= l && r <= R)
    {
        col[rt]=c;
        sum[rt]=c*(r-l+1);
        return;
    }
    PushDown(rt,r-l+1);
    int m = (l+r)>>1;
    if(L <= m) Update(L,R,c,lson);
    if(R > m) Update(L,R,c,rson);
    PushUp(rt);
}

int main()
{
    int T,n,m;
    scanf("%d",&T);
    for(int cas=1;cas<=T;cas++)
    {
        scanf("%d%d",&n,&m);
        build(1,n,1);
        while(m--)
        {
            int a,b,c;
            scanf("%d%d%d",&a,&b,&c);
            Update(a,b,c,1,n,1);
        }
        printf("Case %d: The total value of the hook is %d.\n",cas , sum[1]);
    }
    return 0;
}
FaceCat-Kronos是一款由花卷猫量化团队基于清华大学Kronos开源架构开发的金融预测系统。该系统融合了深度学习方法,通过对证券历史行情进行大规模预训练,构建了能够识别市场微观结构的分析模型。该工具的核心功能在于为做市商及短线交易者提供高精度的价格形态规律推演,从而优化其交易策略的制定过程。 从技术架构来看,该系统依托Kronos框架的高性能计算特性,实现了对海量金融时序数据的高效处理。通过引入多层神经网络,模型能够捕捉传统技术分析难以察觉的非线性关联与潜在模式。这种基于人工智能的量化分析方法,不仅提升了市场数据的信息提取效率,也为金融决策过程引入了更为客观的算法依据。 在行业应用层面,此类工具的演进反映了金融科技领域向数据驱动范式转型的趋势。随着机器学习算法的持续优化,量化预测模型在时序外推准确性方面有望取得进一步突破,这可能对市场定价机制与风险管理实践产生结构性影响。值得注意的是,在推进技术应用的同时,需同步完善数据治理框架,确保模型训练所涉及的敏感金融信息符合隐私保护与合规性要求。 总体而言,FaceCat-Kronos代表了金融分析工具向智能化方向演进的技术探索。它的发展既体现了开源计算生态与专业领域知识的有效结合,也为市场参与者提供了补充传统分析方法的算法工具。未来随着跨学科技术的持续融合,此类系统有望在风险控制、策略回测等多个维度推动投资管理的科学化进程。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值