用Spark计算引擎执行FATE联邦学习任务

本文介绍了FATE如何使用Spark作为计算引擎执行联邦学习任务,详细讲解了FATE Flow服务结构、使用Spark与Eggroll的区别,并提供了使用Spark的前置条件和示例。
摘要由CSDN通过智能技术生成

题图摄于北京前门

(本文作者系 VMware 中国研发云原生实验室工程师,联邦学习开源项目 KubeFATE / FATE-Operator 维护者。)

需要加入KubeFATE开源项目讨论群的同学,请关注亨利笔记公众号后回复 “kubefate” 即可。

VMware招聘联邦学习、隐私计算开发工程师

相关文章

在Juypter Notebook中构建联邦学习任务

云原生联邦学习平台 KubeFATE 原理详解

用KubeFATE在K8s上部署联邦学习FATE v1.5

使用Docker Compose 部署FATE v1.5

在上篇文章 在Juypter Notebook中构建联邦学习任务 构建任务中提到,FATE

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值