二叉树的遍历

二叉树

    二叉树(Binary tree)是树形结构的一个重要类型,二叉树的特点是每个结点最多只能有两棵子树,且有左右之分,下图所示就是一棵二叉树。

在这里插入图片描述

先序遍历

    前序遍历(DLR)是二叉树遍历的一种,也叫做先根遍历、前序遍历、前序周游,可记做根左右。前序遍历首先访问根结点,然后遍历左子树,最后遍历右子树。
    对于上图中的二叉树,先序遍历结果为:1、2、4、5、3、6、7

中序遍历

    中序遍历(LDR)是二叉树遍历的一种,也叫做中根遍历、中序周游。可记做左根右,中序遍历首先遍历左子树,然后访问根结点,最后遍历右子树。
    对于上图中的二叉树,中序遍历结果为:4、2、5、1、6、3、7

后序遍历

    后序遍历(LRD)是二叉树遍历的一种,也叫做后根遍历、后序周游,可记做左右根。后序遍历首先遍历左子树,然后遍历右子树,最后访问根结点。
    对于上图中的二叉树,后序遍历结果为:4、5、2、6、7、3、1

遍历算法java代码实现

树的类结构

public class TreeNode {
    int val;
    TreeNode left;
    TreeNode right;

    TreeNode(int x) {
        val = x;
    }
}

递归版本

/**
 * 先序遍历
 * @param treeNode 根节点
 */
public void preOrderTraversal(TreeNode treeNode) {
    if (treeNode == null) {
        return;
    }
    System.out.println(treeNode.val);
    preOrderTraversal(treeNode.left);
    preOrderTraversal(treeNode.right);
}

/**
 * 中序遍历
 * @param treeNode 根节点
 */
public void inOrderTraversal(TreeNode treeNode) {
    if (treeNode == null) {
        return;
    }
    inOrderTraversal(treeNode.left);
    System.out.println(treeNode.val);
    inOrderTraversal(treeNode.right);
}

/**
 * 后序遍历
 * @param treeNode 根节点
 */
public void postOrderTraversal(TreeNode treeNode) {
    if (treeNode == null) {
        return;
    }
    postOrderTraversal(treeNode.left);
    postOrderTraversal(treeNode.right);
    System.out.println(treeNode.val);
}

非递归版本

/**
 * 先序遍历
 *
 * @param treeNode 根节点
 */
public void preOrderTraversal(TreeNode treeNode) {
    if (treeNode == null) {
        return;
    }
    
    Deque<TreeNode> deque = new LinkedList<>();
    deque.offerLast(treeNode);
    
    while (!deque.isEmpty()) {
        treeNode = deque.pollLast();
        System.out.println(treeNode.val);
        
        if (treeNode.right != null) {
            deque.offerLast(treeNode.right);
        }
        
        if (treeNode.left != null) {
            deque.offerLast(treeNode.left);
        }
    }
}

/**
 * 中序遍历
 *
 * @param treeNode 根节点
 */
public void inOrderTraversal(TreeNode treeNode) {
    if (treeNode == null) {
        return;
    }

    Deque<TreeNode> deque = new LinkedList<>();
    deque.offerLast(treeNode);

    while (!deque.isEmpty()) {
        if (treeNode != null && treeNode.left != null) {
            treeNode = treeNode.left;
            deque.offerLast(treeNode);
            continue;
        }

        treeNode = deque.pollLast();
        System.out.println(treeNode.val);

        if (treeNode.right != null) {
            deque.offerLast(treeNode.right);
            treeNode = treeNode.right;
        } else {
            treeNode = null;
        }
    }
}

/**
 * 后序遍历
 *
 * @param treeNode 根节点
 */
public void postOrderTraversal(TreeNode treeNode) {
    if (treeNode == null) {
        return;
    }
    
    Deque<TreeNode> deque1 = new LinkedList<>();
    Deque<Integer> deque2 = new LinkedList<>();
    deque1.offerLast(treeNode);

    while (!deque1.isEmpty()) {
        treeNode = deque1.pollLast();
        deque2.offerFirst(treeNode.val);

        if (treeNode.left != null) {
            deque1.offerLast(treeNode.left);
        }

        if (treeNode.right != null) {
            deque1.offerLast(treeNode.right);
        }
    }

    deque2.stream().forEach(System.out::println);
}
展开阅读全文

Git 实用技巧

11-24
这几年越来越多的开发团队使用了Git,掌握Git的使用已经越来越重要,已经是一个开发者必备的一项技能;但很多人在刚开始学习Git的时候会遇到很多疑问,比如之前使用过SVN的开发者想不通Git提交代码为什么需要先commit然后再去push,而不是一条命令一次性搞定; 更多的开发者对Git已经入门,不过在遇到一些代码冲突、需要恢复Git代码时候就不知所措,这个时候哪些对 Git掌握得比较好的少数人,就像团队中的神一样,在队友遇到 Git 相关的问题的时候用各种流利的操作来帮助队友于水火。 我去年刚加入新团队,发现一些同事对Git的常规操作没太大问题,但对Git的理解还是比较生疏,比如说分支和分支之间的关联关系、合并代码时候的冲突解决、提交代码前未拉取新代码导致冲突问题的处理等,我在协助处理这些问题的时候也记录各种问题的解决办法,希望整理后通过教程帮助到更多对Git操作进阶的开发者。 本期教程学习方法分为“掌握基础——稳步进阶——熟悉协作”三个层次。从掌握基础的 Git的推送和拉取开始,以案例进行演示,分析每一个步骤的操作方式和原理,从理解Git 工具的操作到学会代码存储结构、演示不同场景下Git遇到问题的不同处理方案。循序渐进让同学们掌握Git工具在团队协作中的整体协作流程。 在教程中会通过大量案例进行分析,案例会模拟在工作中遇到的问题,从最基础的代码提交和拉取、代码冲突解决、代码仓库的数据维护、Git服务端搭建等。为了让同学们容易理解,对Git简单易懂,文章中详细记录了详细的操作步骤,提供大量演示截图和解析。在教程的最后部分,会从提升团队整体效率的角度对Git工具进行讲解,包括规范操作、Gitlab的搭建、钩子事件的应用等。 为了让同学们可以利用碎片化时间来灵活学习,在教程文章中大程度降低了上下文的依赖,让大家可以在工作之余进行学习与实战,并同时掌握里面涉及的Git不常见操作的相关知识,理解Git工具在工作遇到的问题解决思路和方法,相信一定会对大家的前端技能进阶大有帮助。
©️2020 CSDN 皮肤主题: 大白 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值