选择排序是每次从未排序的队列中取出最小值,然后插到已排序队列的尾部。
例子: 12, 78, 9,7,25;待排序的数组元素
[7] [78, 9, 12, 25] 进行第一次排序时,min = 7,将它插到已排序队列的尾部,因为是第一次排序所以7 为已排序队列的首部。这里所说的插到已排序队列的尾部,其实是将找到的最小值和已排序的后一位值做交换。
[7, 9] [78,12,25]
[7,9, 12] [78, 25]
[7,9,12, 25] [78]
[7,9,12, 25 78] 排序完成
void SelectSort(int number[])
{
int i, j, min;
for(i = 1; i < MAX; i++)
{
min = i;
for(j = i+1; j <= MAX; j++)
{
if(number[min] > number[j]) min = j;
}
if(min != i) SWAP(number[i],number[min]);
}
printf("sorted : ");
for(i = 1; i <= MAX; i++)
printf("%d ",number[i]);
printf("\n");
}
代码中每次用一个min 值来记录最小值的下标,为了后面的方便使用,数组从下标 1 开始计数
那么选择排序的算法复杂度就是 n+(n-1)+.......+1 = (1+n)*n/2 = O(n^2)
从上述选择排序的思想可以看出,这个n^2 主要消耗在寻找最小值上面,那么欲对其进行优化,必须以极快的速度找到未排序数列中的最小值,在这里我使用的是最小堆树的结构,因为堆树搜寻的路径是树根到叶子节点,而不是遍历整个未排序的部分。
最小堆树有2 个叶子节点,根的值是最小值,而2个叶子节点之间无须进行排序
下面是一个最小堆树:
根据二叉树的概念可以得出 root = leaf / 2;
假定10 个数字在数组中,且下标是从 零开始
经过交换节点:得到一个最小堆树
将根和最后一个叶子节点做交换, 取出最小值,并且继续调整树,使其满足最小堆的性质
以此循环下去,直到最后一个数
#include <stdio.h>
#include <time.h>
#define MAX 10
#define SWAP(x,y){int t; t = x; x = y; y = t;}
void UltimateSelectSort(int number[])
{
int i,root,leaf,m;
int heap[MAX+1];
for(i = 1; i <= MAX; i++)
{
heap[i] = number[i];
leaf = i;
root = leaf/2;
while(leaf >= 2 && heap[root]>heap[leaf])
{
SWAP(heap[root], heap[leaf]);
leaf = root;
root = leaf/2;
}
}
for(i = 1; i <= MAX; i++)
number[i] = heap[i];
m = MAX;
while(m > 1)
{
SWAP(number[1],number[m]);
m--;
root = 1;
leaf = root * 2;
while(leaf <= m)
{
if((leaf < m) && (number[leaf]>number[leaf+1]))
leaf++;
if(number[root] <= number[leaf]) break;
SWAP(number[root], number[leaf]);
root = leaf;
leaf = root * 2;
}
}
printf("sorted : ");
for(i = MAX; i > 0; i--)
printf("%d ", number[i]);
printf("\n");
}
int main()
{
int number[MAX+1];
int i;
srand(time(NULL));
printf("Previous of sort : ");
for(i = 1; i <= MAX; i++)
{
number[i] = rand() % 100;
printf("%d ",number[i]);
}
printf("\n");
UltimateSelectSort(number);
return 0;
}
经过优化之后的算法复杂度为O(n*log2n) 以2为底,可以看出,优化之后的效率明显上升了一个档次