DETR论文笔记 文章提出一种基于Transformer架构的目标检测框架,并表现出了和Faster RCNN相当的性能。利用Encoder-Decoder结构简化了检测流程,并在此基础上提出一种集合的全局损失,通过二部匹配实现唯一预测。它的流程为:给定Quary学习对象集,DETR推理学习对象与全局的上下文关系,并行输出最终预测集。二分图匹配(bipartite matching):图的顶点可以分为两个集合,每条边应对的顶点分别属于这两个集合,G=[V,E],结点集合V可以分割为互不相交的子集(V1,V2)。