大数据毕业设计:基于python图书推荐系统 书籍推荐 基于用户协同过滤推荐算法 基于物品协同过滤推荐算法 Django框架(源码+文档)✅

博主介绍:✌全网粉丝10W+,前互联网大厂软件研发、集结硕博英豪成立工作室。专注于计算机相关专业项目实战6年之久,选择我们就是选择放心、选择安心毕业✌
> 🍅想要获取完整文章或者源码,或者代做,拉到文章底部即可与我联系了。🍅

点击查看作者主页,了解更多项目!

🍅感兴趣的可以先收藏起来,点赞、关注不迷路,大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助同学们顺利毕业 。🍅

1、毕业设计:2025年计算机专业毕业设计选题汇总(建议收藏)✅

2、大数据毕业设计:2025年选题大全 深度学习 python语言 JAVA语言 hadoop和spark(建议收藏)✅

1、项目介绍

一、开发工具及技术
Python 语言、Django框架,MySQL数据库,navicat数据库管理工具,基于用户协同过滤推荐算法、基于物品协同过滤推荐算法、html页面,javascript脚本,jquery脚本,bootstrap前端框架,layer弹窗组件、webuploader文件上传组件等。

二、个性化推荐功能
无论是否登录,在前台首页展示热点推荐(根据图书被收藏数量降序推荐)
登录用户,在前台首页展示个性化推荐,基于用户的协同过滤推荐算法和基于项目的协同过滤推荐算法,根据评分数据,如果没有推荐结果进行喜好标签推荐(随机查找喜好标签下的图书)。算法的实现使用python常规函数,严格按照算法步骤实现。

2、项目界面

(1)首页----图书列表
在这里插入图片描述

(2)图书详情页、相关图书推荐

在这里插入图片描述

(3)热点推荐、个性化推荐

在这里插入图片描述

(4)个人中心、兴趣爱好设置、我的收藏、评论

在这里插入图片描述
(5)注册登录
在这里插入图片描述
(6)后台数据管理
在这里插入图片描述

3、项目说明

  1. 首页
    功能描述:首页是用户访问网站的第一站,主要展示图书列表。
    特点:
    热点推荐:无论用户是否登录,都会展示根据图书被收藏数量降序排列的热点图书。
    个性化推荐:登录用户会看到基于其历史行为和偏好的个性化图书推荐。推荐算法结合了基于用户的协同过滤和基于项目的协同过滤,如果评分数据不足以生成推荐,则随机展示用户喜好标签下的图书。
  2. 图书详情页
    功能描述:展示单本图书的详细信息,包括封面、简介、作者、出版社等。
    特点:
    相关图书推荐:根据当前图书的内容、类型或用户行为,推荐相关的图书。
    用户互动:用户可以在详情页进行收藏、评论等操作。
  3. 热点推荐与个性化推荐
    功能描述:专门用于展示推荐图书的模块。
    特点:
    热点推荐:根据图书的收藏量实时更新,确保用户看到最受欢迎的图书。
    个性化推荐:利用协同过滤算法,根据用户的历史行为和偏好生成个性化的图书推荐列表。
  4. 个人中心
    功能描述:用户的个人主页,展示用户的个人信息、收藏、评论等。
    特点:
    兴趣爱好设置:用户可以在个人中心设置自己的兴趣爱好,以便系统更准确地推荐图书。
    我的收藏:展示用户收藏的图书列表,方便用户随时查看。
    评论管理:用户可以查看和管理自己发表的评论。
  5. 注册登录
    功能描述:用户注册和登录的模块。
    特点:
    用户注册:新用户可以通过填写相关信息进行注册,注册成功后可以登录网站。
    用户登录:已注册用户可以通过输入用户名和密码登录网站,享受更多个性化服务。
  6. 后台数据管理
    功能描述:管理员用于管理网站数据的后台系统。
    特点:
    图书管理:管理员可以添加、编辑、删除图书信息,确保网站图书数据的准确性和完整性。
    用户管理:管理员可以查看和管理用户信息,包括用户的注册信息、登录状态等。
    评论管理:管理员可以查看和管理用户发表的评论,确保评论内容的合法性和合规性。
    数据分析:管理员可以通过后台系统查看网站的数据统计和分析报告,了解网站的运行情况和用户行为。
    总结
    该项目是一个基于Django框架的图书推荐系统,通过结合MySQL数据库、前端技术和多种推荐算法,为用户提供了丰富的图书推荐和个性化服务。项目功能全面,界面美观,用户体验良好,具有较高的实用价值。

4、核心代码

# 基于用户的协同过滤推荐算法实现模块
import operator
#import rpvpext.webutil
from apps.util.cfra.common.Constant import Constant
from apps.util.cfra.model.DataModel import DataModel
from apps.util.cfra.neighborhood.UserNeighborhood import UserNeighborhood
from apps.util.cfra.recommender.UserRecommender import UserRecommender
from apps.util.cfra.similarity.CosineSimilarity import CosineSimilarity
from apps.util.cfra.similarity.UserSimilarity import UserSimilarity

class UserCF(object):

    def __init__(self):
        pass

    # 推荐方法
    def recommend(self, dataModel, cUserid):
        print("基于用户的协同过滤推荐算法开始")
        # 获取用户id列表
        userIDsList = dataModel.userIDsList

        if len(userIDsList) == 0:
            print("\n暂无评分数据!")
            print("\n基于用户的协同过滤推荐算法结束")
            return None

        # 升序排列
        userIDsList = sorted(userIDsList, reverse=False)
        print("用户数量:%d" % len(userIDsList))
        # 输出用户id列表
        dataModel.printUserIds(userIDsList)

        # 获取项目id列表
        itemIDsList = dataModel.itemIDsList
        # 降序排列
        itemIDsList = sorted(itemIDsList, reverse=False)
        print("\n项目数量:%d" % len(itemIDsList))
        # 输出项目id列表
        dataModel.printItemIds(itemIDsList)

        # 打印用户项目喜好矩阵
        dataModel.printUserItemPrefMatrix(userIDsList,dataModel.userItemPrefMatrixDic)

        # 判断当前用户是否有评分数据
        if cUserid not in dataModel.userItemPrefMatrixDic.keys():
            print("\n当前用户 %s 暂无评分数据!" % cUserid)
            print("\n基于用户的协同过滤推荐算法结束")
            return None

        # 实例化余弦相似度算法
        cosineSimilarity = CosineSimilarity()

        # 实例化用户相似度
        userSimilarity = UserSimilarity()

        # 计算目标用户与其他用户的相似度
        userSimilarityDic = userSimilarity.getUserSimilaritys(cUserid, cosineSimilarity, dataModel)
        # 先根据用户id升序
        userSimilarityDicTemp = sorted(userSimilarityDic.items(), key=operator.itemgetter(0), reverse=False)
        print("\n用户:%-5s与其他用户的相似度为:" % cUserid)
        # 输出目标用户的相似度
        userSimilarity.printUserSimilaritys(userSimilarityDicTemp)

        # 实例化用户邻居对象
        userNeighborhood = UserNeighborhood()
        # 获取目标用户的最近邻居
        kNUserNeighborhood = userNeighborhood.getKUserNeighborhoods(userSimilarityDic)
        print("\n用户:%-5s的前%d个最近邻居为:" % (cUserid, Constant.knn))
        # 输出目标用户的最近邻居
        userNeighborhood.printKUserNeighborhoods(kNUserNeighborhood)

        # 实例化用户推荐对象
        userRecommender = UserRecommender()
        # 推荐
        recommenderItemFinalDic = userRecommender.getUserRecommender(cUserid, dict(kNUserNeighborhood), dataModel)
        print("\n用户:%-5s的前%d个推荐项目为:" % (cUserid, Constant.cfCount))

        recommenderItemFinalDic = sorted(recommenderItemFinalDic.items(), key=operator.itemgetter(1), reverse=True)
        recommenderItemFinalDic = recommenderItemFinalDic[0:Constant.cfCount]
        # 打印预测评分
        userRecommender.printPref(recommenderItemFinalDic)

        print("\n基于用户的协同过滤推荐算法结束")
        return recommenderItemFinalDic

5、源码获取方式

🍅由于篇幅限制,获取完整文章或源码、代做项目的,查看我的【用户名】、【专栏名称】、【顶部选题链接】就可以找到我啦🍅

感兴趣的可以先收藏起来,点赞、关注不迷路,下方查看👇🏻获取联系方式👇🏻

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值