博主介绍:✌全网粉丝10W+,前互联网大厂软件研发、集结硕博英豪成立工作室。专注于计算机相关专业项目实战6年之久,选择我们就是选择放心、选择安心毕业✌
> 🍅想要获取完整文章或者源码,或者代做,拉到文章底部即可与我联系了。🍅🍅感兴趣的可以先收藏起来,点赞、关注不迷路,大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助同学们顺利毕业 。🍅
1、毕业设计:2025年计算机专业毕业设计选题汇总(建议收藏)✅
2、大数据毕业设计:2025年选题大全 深度学习 python语言 JAVA语言 hadoop和spark(建议收藏)✅
1、项目介绍
一、开发工具及技术
Python 语言、Django框架,MySQL数据库,navicat数据库管理工具,基于用户协同过滤推荐算法、基于物品协同过滤推荐算法、html页面,javascript脚本,jquery脚本,bootstrap前端框架,layer弹窗组件、webuploader文件上传组件等。
二、个性化推荐功能
无论是否登录,在前台首页展示热点推荐(根据图书被收藏数量降序推荐)
登录用户,在前台首页展示个性化推荐,基于用户的协同过滤推荐算法和基于项目的协同过滤推荐算法,根据评分数据,如果没有推荐结果进行喜好标签推荐(随机查找喜好标签下的图书)。算法的实现使用python常规函数,严格按照算法步骤实现。
2、项目界面
(1)首页----图书列表
(2)图书详情页、相关图书推荐
(3)热点推荐、个性化推荐
(4)个人中心、兴趣爱好设置、我的收藏、评论
(5)注册登录
(6)后台数据管理
3、项目说明
- 首页
功能描述:首页是用户访问网站的第一站,主要展示图书列表。
特点:
热点推荐:无论用户是否登录,都会展示根据图书被收藏数量降序排列的热点图书。
个性化推荐:登录用户会看到基于其历史行为和偏好的个性化图书推荐。推荐算法结合了基于用户的协同过滤和基于项目的协同过滤,如果评分数据不足以生成推荐,则随机展示用户喜好标签下的图书。 - 图书详情页
功能描述:展示单本图书的详细信息,包括封面、简介、作者、出版社等。
特点:
相关图书推荐:根据当前图书的内容、类型或用户行为,推荐相关的图书。
用户互动:用户可以在详情页进行收藏、评论等操作。 - 热点推荐与个性化推荐
功能描述:专门用于展示推荐图书的模块。
特点:
热点推荐:根据图书的收藏量实时更新,确保用户看到最受欢迎的图书。
个性化推荐:利用协同过滤算法,根据用户的历史行为和偏好生成个性化的图书推荐列表。 - 个人中心
功能描述:用户的个人主页,展示用户的个人信息、收藏、评论等。
特点:
兴趣爱好设置:用户可以在个人中心设置自己的兴趣爱好,以便系统更准确地推荐图书。
我的收藏:展示用户收藏的图书列表,方便用户随时查看。
评论管理:用户可以查看和管理自己发表的评论。 - 注册登录
功能描述:用户注册和登录的模块。
特点:
用户注册:新用户可以通过填写相关信息进行注册,注册成功后可以登录网站。
用户登录:已注册用户可以通过输入用户名和密码登录网站,享受更多个性化服务。 - 后台数据管理
功能描述:管理员用于管理网站数据的后台系统。
特点:
图书管理:管理员可以添加、编辑、删除图书信息,确保网站图书数据的准确性和完整性。
用户管理:管理员可以查看和管理用户信息,包括用户的注册信息、登录状态等。
评论管理:管理员可以查看和管理用户发表的评论,确保评论内容的合法性和合规性。
数据分析:管理员可以通过后台系统查看网站的数据统计和分析报告,了解网站的运行情况和用户行为。
总结
该项目是一个基于Django框架的图书推荐系统,通过结合MySQL数据库、前端技术和多种推荐算法,为用户提供了丰富的图书推荐和个性化服务。项目功能全面,界面美观,用户体验良好,具有较高的实用价值。
4、核心代码
# 基于用户的协同过滤推荐算法实现模块
import operator
#import rpvpext.webutil
from apps.util.cfra.common.Constant import Constant
from apps.util.cfra.model.DataModel import DataModel
from apps.util.cfra.neighborhood.UserNeighborhood import UserNeighborhood
from apps.util.cfra.recommender.UserRecommender import UserRecommender
from apps.util.cfra.similarity.CosineSimilarity import CosineSimilarity
from apps.util.cfra.similarity.UserSimilarity import UserSimilarity
class UserCF(object):
def __init__(self):
pass
# 推荐方法
def recommend(self, dataModel, cUserid):
print("基于用户的协同过滤推荐算法开始")
# 获取用户id列表
userIDsList = dataModel.userIDsList
if len(userIDsList) == 0:
print("\n暂无评分数据!")
print("\n基于用户的协同过滤推荐算法结束")
return None
# 升序排列
userIDsList = sorted(userIDsList, reverse=False)
print("用户数量:%d" % len(userIDsList))
# 输出用户id列表
dataModel.printUserIds(userIDsList)
# 获取项目id列表
itemIDsList = dataModel.itemIDsList
# 降序排列
itemIDsList = sorted(itemIDsList, reverse=False)
print("\n项目数量:%d" % len(itemIDsList))
# 输出项目id列表
dataModel.printItemIds(itemIDsList)
# 打印用户项目喜好矩阵
dataModel.printUserItemPrefMatrix(userIDsList,dataModel.userItemPrefMatrixDic)
# 判断当前用户是否有评分数据
if cUserid not in dataModel.userItemPrefMatrixDic.keys():
print("\n当前用户 %s 暂无评分数据!" % cUserid)
print("\n基于用户的协同过滤推荐算法结束")
return None
# 实例化余弦相似度算法
cosineSimilarity = CosineSimilarity()
# 实例化用户相似度
userSimilarity = UserSimilarity()
# 计算目标用户与其他用户的相似度
userSimilarityDic = userSimilarity.getUserSimilaritys(cUserid, cosineSimilarity, dataModel)
# 先根据用户id升序
userSimilarityDicTemp = sorted(userSimilarityDic.items(), key=operator.itemgetter(0), reverse=False)
print("\n用户:%-5s与其他用户的相似度为:" % cUserid)
# 输出目标用户的相似度
userSimilarity.printUserSimilaritys(userSimilarityDicTemp)
# 实例化用户邻居对象
userNeighborhood = UserNeighborhood()
# 获取目标用户的最近邻居
kNUserNeighborhood = userNeighborhood.getKUserNeighborhoods(userSimilarityDic)
print("\n用户:%-5s的前%d个最近邻居为:" % (cUserid, Constant.knn))
# 输出目标用户的最近邻居
userNeighborhood.printKUserNeighborhoods(kNUserNeighborhood)
# 实例化用户推荐对象
userRecommender = UserRecommender()
# 推荐
recommenderItemFinalDic = userRecommender.getUserRecommender(cUserid, dict(kNUserNeighborhood), dataModel)
print("\n用户:%-5s的前%d个推荐项目为:" % (cUserid, Constant.cfCount))
recommenderItemFinalDic = sorted(recommenderItemFinalDic.items(), key=operator.itemgetter(1), reverse=True)
recommenderItemFinalDic = recommenderItemFinalDic[0:Constant.cfCount]
# 打印预测评分
userRecommender.printPref(recommenderItemFinalDic)
print("\n基于用户的协同过滤推荐算法结束")
return recommenderItemFinalDic
5、源码获取方式
🍅由于篇幅限制,获取完整文章或源码、代做项目的,查看我的【用户名】、【专栏名称】、【顶部选题链接】就可以找到我啦🍅
感兴趣的可以先收藏起来,点赞、关注不迷路,下方查看👇🏻获取联系方式👇🏻