博主介绍:✌全网粉丝10W+,前互联网大厂软件研发、集结硕博英豪成立软件开发工作室,专注于计算机相关专业项目实战6年之久,累计开发项目作品上万套。凭借丰富的经验与专业实力,已帮助成千上万的学生顺利毕业,选择我们,就是选择放心、选择安心毕业✌
> 🍅想要获取完整文章或者源码,或者代做,拉到文章底部即可与我联系了。🍅🍅感兴趣的可以先收藏起来,点赞、关注不迷路,大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助同学们顺利毕业 。🍅
1、毕业设计:2026年计算机专业毕业设计选题汇总(建议收藏)✅
1、项目介绍
- 技术栈:Python语言、Flask框架(Web后端+API开发)、requests爬虫(汽车之家二手车数据采集)、基于用户的协同过滤推荐算法、Echarts可视化(多维度图表)、MySQL/MongoDB数据库(数据存储)、HTML+CSS(前端交互界面)
- 核心功能:汽车之家二手车数据自动化采集(车型、价格、里程、车龄等)、基于用户行为的个性化推荐(协同过滤驱动)、多维度数据可视化分析(品牌销量、单品牌详情、价格分布等)、用户交互(注册登录、历史记录查看、偏好设置)、数据存储与管理
- 研究背景:二手车市场信息高度分散(汽车之家等平台车型多、参数杂),用户面临两大痛点——一是“选车难”(手动对比几十款车型的价格、里程、车龄效率低),二是“推荐不精准”(传统推荐依赖热门度,忽略个人偏好如“偏好3年车龄内的丰田”);同时从业者缺乏直观的市场数据洞察工具,亟需“数据采集-智能推荐-可视化分析”一体化系统解决。
- 研究意义:技术层面,整合爬虫、协同过滤算法与Flask Web架构,构建“数据全流程处理”技术链;用户层面,为购车者提供“精准推荐+数据对比”,降低选车成本;行业层面,为二手车经销商提供市场趋势(如某品牌热销车型),辅助库存调整;学习层面,适合作为Python全栈+推荐算法的毕业设计,覆盖核心技能与实际应用场景。
2、项目界面
-
汽车数据分析可视化(市场整体趋势图表)

-
各品牌上架销售数量分析(品牌销量对比)

-
奔驰汽车数据分析(单品牌详细洞察)

-
二手车数据(车型列表与核心参数)

-
丰田汽车数据分析(单品牌趋势与分布)

-
注册登录界面(用户身份认证入口)

3、项目说明
本项目是基于Flask+协同过滤算法的二手车数据智能分析与推荐系统,核心通过requests爬虫采集汽车之家数据,结合用户行为分析生成个性化推荐,配套Echarts可视化与用户交互功能,旨在解决二手车市场信息分散、推荐不精准、分析低效的问题。
(1)系统架构与技术逻辑
- 架构设计:采用“分层协作”模式,覆盖“数据-算法-应用”全流程:
- 爬虫层(requests):定向采集汽车之家二手车板块数据,突破“手动复制低效”瓶颈,核心采集字段包括——车型(如“丰田凯美瑞2021款”)、基础参数(价格、车龄、里程数、颜色、变速箱类型)、上架时间、经销商信息;
- 数据层(MySQL/MongoDB):存储两类核心数据——
- 业务数据:二手车基础信息(车型表)、市场动态(上架/成交记录);
- 用户数据:用户账号(注册信息)、行为数据(浏览记录、收藏车型、历史评价)、推荐日志;
- 算法层:
- 数据分析:Pandas处理原始数据(清洗异常值如“里程数为0”、统计品牌销量、聚合价格区间),为可视化提供结构化输入;
- 推荐算法:基于用户的协同过滤——通过余弦相似度计算“目标用户与其他用户的行为相似度”(如共同收藏的车型、对同类车型的评价偏差),筛选TOP10相似用户,推荐其高偏好且目标用户未浏览的二手车;
- 应用层:
- 后端(Flask):提供API接口(数据查询、推荐调用、用户认证)、处理请求逻辑(如用户点击“查看详情”后记录浏览行为)、管理数据库交互;
- 前端:HTML+CSS构建响应式界面,Echarts渲染可视化图表,支持用户操作(筛选车型、查看推荐、登录注册);
- 核心流程:requests爬虫采集数据→清洗后存入数据库→用户行为(浏览/收藏)记录至用户表→Flask调用协同过滤算法生成推荐→Echarts展示可视化结果(市场趋势/品牌分析)→用户通过前端查看推荐/数据→管理员维护数据库。
(2)核心功能模块详解
① 汽车之家二手车数据采集模块(基础支撑)
- 功能:自动化提取高质量二手车数据,保障系统数据源时效性;
- 技术实现(requests核心操作):
- 定向爬取逻辑:
- 入口页:请求汽车之家二手车列表页(如“全国-轿车”板块),提取车型详情页链接;
- 详情页:循环访问链接,解析HTML提取目标字段(借助BeautifulSoup定位标签,如价格在
<span class="price">标签内);
- 反爬优化:
- 伪装请求:添加随机User-Agent(模拟不同浏览器)、携带Cookie(降低被识别为爬虫的概率);
- 速率控制:设置爬取间隔(每3秒1次请求),避免短时间内高频访问导致IP封禁;
- 数据清洗:
- 异常值处理:剔除“价格低于1万”“车龄超过10年”的异常车型(判定为无效数据);
- 格式统一:将“车龄1年6个月”转为“1.5年”,“里程2.3万公里”转为“23000公里”,确保数据标准化。
- 定向爬取逻辑:
② 基于用户的协同过滤推荐模块(核心价值)
- 功能:解决“推荐同质化”问题,为用户匹配符合个人偏好的二手车;
- 技术实现(协同过滤核心步骤):
- 数据准备:构建“用户-车型行为矩阵”,行为包括“浏览(权重1)、收藏(权重3)、评价(评分1-5,权重=评分)”,矩阵值为用户对车型的加权行为得分;
- 相似度计算:通过余弦相似度计算用户间的偏好相似度,公式为:
sim ( u , v ) = ∑ i ∈ I u v r u i × r v i ∑ i ∈ I u r u i 2 × ∑ i ∈ I v r v i 2 \text{sim}(u,v) = \frac{\sum_{i \in I_{uv}} r_{ui} \times r_{vi}}{\sqrt{\sum_{i \in I_u} r_{ui}^2} \times \sqrt{\sum_{i \in I_v} r_{vi}^2}} sim(u,v)=∑i∈Iurui2×∑i∈Ivrvi2∑i∈Iuvrui×rvi
其中 u u u为目标用户, v v v为其他用户, I u v I_{uv} Iuv为两者共同交互的车型集合, r u i r_{ui} rui为 u u u对车型 i i i的行为得分; - 推荐生成:
- 筛选相似用户:选取相似度≥0.7的TOP10用户;
- 加权推荐:对相似用户的车型行为得分加权(相似度越高权重越大),排除目标用户已浏览的车型,按得分降序生成TOP5推荐列表;
- 结果展示:推荐页面标注“推荐理由”(如“与您相似的用户收藏了该车型”),附车型核心参数(价格、车龄、里程),支持一键查看详情。
③ 多维度Echarts可视化分析模块(数据洞察)
针对二手车市场核心维度,生成直观图表,辅助用户与从业者决策:
- 汽车数据分析可视化(市场整体):
- 图表类型:折线图展示“近3个月二手车上架总量趋势”、柱状图对比“不同价格区间车型占比”(如10-15万占35%);
- 价值:用户快速把握市场供需变化(如旺季上架量激增);
- 各品牌上架销售数量分析:
- 图表类型:横向柱状图展示“TOP10品牌上架数量”(如丰田第一、本田第二)、饼图展示“各品牌市场占比”;
- 价值:经销商了解竞品热度,调整库存结构;
- 单品牌数据分析(奔驰/丰田):
- 图表类型:折线图展示“该品牌近1年上架量变化”、散点图展示“车龄与价格的关联”(如3年车龄奔驰均价25万)、饼图展示“该品牌热门车型占比”(如丰田凯美瑞占该品牌30%);
- 价值:用户聚焦目标品牌,精准定位性价比车型。
④ 用户交互与数据管理模块(体验支撑)
- 注册登录:
- 功能:用户通过账号密码注册,登录后解锁“个性化推荐”“历史记录”功能,密码加密存储(SHA-256),防止信息泄露;
- 二手车数据列表:
- 功能:展示全量二手车信息,支持按“品牌(下拉选择)、价格区间(输入框)、车龄(滑块筛选)”组合查询,结果按“上架时间”排序,快速定位目标车型;
- 实际开发考量:
- 数据安全:用户行为数据仅本人可见,管理员需权限验证才能访问全量数据;
- 缓存优化:热门车型数据(如丰田凯美瑞)缓存至Redis,减少数据库查询次数,提升页面加载速度;
- 异常处理:爬虫采集失败时触发重试机制,推荐算法无足够用户数据时默认展示“热门车型”,避免功能失效。
4、核心代码
#!/usr/bin/python
# -*- coding: UTF-8 -*-
from math import sqrt
import operator
#1.构建用户-->物品的倒排
def loadData(files):
data ={};
for line in files:
user,score,item=line.split(",");
data.setdefault(user,{});
data[user][item]=score;
return data
#2.计算
# 2.1 构造物品-->物品的共现矩阵
# 2.2 计算物品与物品的相似矩阵
def similarity(data):
# 2.1 构造物品:物品的共现矩阵
N={};#喜欢物品i的总人数
C={};#喜欢物品i也喜欢物品j的人数
for user,item in data.items():
for i,score in item.items():
N.setdefault(i,0);
N[i]+=1;
C.setdefault(i,{});
for j,scores in item.items():
if j not in i:
C[i].setdefault(j,0);
C[i][j]+=1;
#2.2 计算物品与物品的相似矩阵
W={};
for i,item in C.items():
W.setdefault(i,{});
for j,item2 in item.items():
W[i].setdefault(j,0);
W[i][j]=C[i][j]/sqrt(N[i]*N[j]);
return W
#3.根据用户的历史记录,给用户推荐物品
def recommandList(data,W,user,k=3,N=10):
rank={};
for i,score in data[user].items():#获得用户user历史记录,如A用户的历史记录为{'a': '1', 'b': '1', 'd': '1'}
for j,w in sorted(W[i].items(),key=operator.itemgetter(1),reverse=True)[0:k]:#获得与物品i相似的k个物品
if j not in data[user].keys():#该相似的物品不在用户user的记录里
rank.setdefault(j,0);
rank[j]+=float(score) * w;
return sorted(rank.items(),key=operator.itemgetter(1),reverse=True)[0:N];
if __name__=='__main__':
#用户,兴趣度,物品
# uid_score_bid = ['A,1,a', 'A,1,b', 'A,1,d', 'B,1,b', 'B,1,c', 'B,1,e']
uid_score_bid = ['5,1,5','2,1,5', '2,1,38', '2,1,40', '2,1,44', '2,1,63', '2,1,107', '2,1,6', '2,1,14', '2,1,27', '2,1,32', '2,1,56', '2,1,77', '2,1,89', '2,1,92', '2,1,94', '2,1,111', '2,1,123', '2,1,124', '4,1,9', '4,1,15', '4,1,20', '4,1,22', '4,1,85', '4,1,95', '4,1,99', '4,1,131', '4,1,5', '4,1,38', '4,1,40', '4,1,44', '4,1,63', '4,1,107', '4,1,13', '4,1,17', '4,1,58', '4,1,8', '4,1,18', '4,1,21', '4,1,26', '4,1,34', '4,1,48', '4,1,51', '4,1,64', '4,1,70', '4,1,79', '4,1,84', '4,1,101', '4,1,106', '4,1,116', '4,1,117', '4,1,119', '4,1,126', '2,1,8', '2,1,18', '2,1,21', '2,1,26', '2,1,34', '2,1,48', '2,1,51', '2,1,64', '2,1,70', '2,1,79', '2,1,84', '2,1,101', '2,1,106', '2,1,116', '2,1,117', '2,1,119', '2,1,126']
data=loadData(uid_score_bid);#获得数据
W=similarity(data);#计算物品相似矩阵
recommandList(data,W,'4',3,10);#推荐
🍅✌感兴趣的可以先收藏起来,点赞关注不迷路,想学习更多项目可以查看主页,大家在毕设选题,项目编程以及论文编写等相关问题都可以给我留言咨询,希望可以帮助同学们顺利毕业!🍅✌
5、源码获取方式
🍅由于篇幅限制,获取完整文章或源码、代做项目的,拉到文章底部即可看到个人联系方式。🍅
点赞、收藏、关注,不迷路,下方查看👇🏻获取联系方式👇🏻


被折叠的 条评论
为什么被折叠?



