python画散点图和折线图

python可视化 同时被 2 个专栏收录
3 篇文章 0 订阅
1 篇文章 0 订阅

前提:画图必须要有数据,散点图数据自己构造的,折线图数据是通过线性回归模型预测的

from sklearn.linear_model import LinearRegression
import matplotlib.pyplot as plt

x = [[5.1], [3.5], [7.1], [6.2], [8.8], [7.8], [4.5], [5.6], [8.0], [6.4]]
y = [[1907.], [1287.], [2700.], [2373.], [3260.], [3000.], [1947.], [2273.], [3113.], [2493.]]

plt.scatter(x, y, label = 'scatter') #画散点图

linreg = LinearRegression()
linreg.fit(x, y)  # 回归拟合
y_pred = linreg.predict(x) #将袁术数据输入模型得到预测值

plt.plot(x, y_pred, 'r', label = 'plot')  #画折线图
plt.legend()
plt.show()

原始数据x与y变量存在线性关系,通过线性回归模型拟合两者的关系
y = 140 + 364 * x
140和364是模型拟和算出的,可以通过下面语句打印出来

print(linreg.intercept_)
print(linreg.coef_)

然后将x 输入到这个模型中,得到输出
[[1998.28164405]
[1415.59050279]
[2726.64557063]
[2398.88180367]
[3345.75490822]
[2981.57294493]
[1779.77246608]
[2180.3726257 ]
[3054.40933759]
[2471.71819633]]

在这里插入图片描述

  • 1
    点赞
  • 0
    评论
  • 11
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值