Tarjan求割点和Tarjan求SCC代码对比

求SCC:

void Tarjan(int u)
{
    low[u] = dfn[u] = ++tot;
    stk.push(u);
    for(int e = first[u]; e; e = nxt[e])
    {
        int v = go[e];
        if(!dfn[v])
        {
            Tarjan(v);
            low[u] = min(low[u], low[v]);
        }
        else if(!co[v])
        {
            low[u] = min(low[u], dfn[v]);
        }
    }
    if(low[u] == dfn[u])
    {
        co[u] = ++col;
        while(stk.top() != u)
        {
            co[stk.top()] = col;
            stk.pop();
        }
        stk.pop();
    }
}

求割点:

void Tarjan(int u, int root)
{
    low[u] = dfn[u] = ++tot;
    int ch = 0;
    for(int e = first[u]; e; e = nxt[e])
    {
        int v = go[e];
        if(!dfn[v])
        {
            Tarjan(v, root);
            low[u] = min(low[u], low[v]);
            if(low[v] >= dfn[u] && u != root)
                cut[u] = true;
            if(u == root)
                ++ch;
        }
        else
        {
            low[u] = min(low[u], dfn[v]);
        }
    }
    if(u == root && ch >= 2)
        cut[u] = true;
}

区别:

1. 函数主体第二行:[stk.push(u);] vs. [int ch = 0;]
2. if之内,low[u] = min(low[u], low[v])之后:[无] vs. [判断割点、++ch]
3. else的条件:[!co[v]] vs. [无]
4. for循环之后:[染色] vs. [判断u == root时是不是割点]

因为SCC中有if(!co[v]),所以两个算法的low[]意义改变。


粗心记录:

1. SCC:if(!co[v])老是忘记!

2. 割点:low[u] = min(low[u], low[v])老是忘记!


再说一下求双连通分量(无向图)。

代码:

int vis[MAXM];

void Tarjan(int u)
{
    dfn[u] = low[u] = ++tot;
    stk.push(u);
    for(int e = first[u]; e; e = nxt[e])
    {
        if(!vis[e])
        {
            vis[e] = vis[(e & 1) ? e + 1 : e - 1] = true;
            int v = go[e];
            if(!dfn[v])
            {
                Tarjan(v);
                low[u] = min(low[u], low[v]);
            }
            else if(!co[v])
            {
                low[u] = min(low[u], dfn[v]);
            }
        }
    }
    if(low[u] == dfn[u])
    {
        co[u] = ++col;
        while(stk.top() != u)
        {
            co[stk.top()] = col;
            stk.pop();
        }
        stk.pop();
    }
}

策略:对于已经访问的边e,其对偶边就不能访问了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值