求SCC:
void Tarjan(int u)
{
low[u] = dfn[u] = ++tot;
stk.push(u);
for(int e = first[u]; e; e = nxt[e])
{
int v = go[e];
if(!dfn[v])
{
Tarjan(v);
low[u] = min(low[u], low[v]);
}
else if(!co[v])
{
low[u] = min(low[u], dfn[v]);
}
}
if(low[u] == dfn[u])
{
co[u] = ++col;
while(stk.top() != u)
{
co[stk.top()] = col;
stk.pop();
}
stk.pop();
}
}
求割点:
void Tarjan(int u, int root)
{
low[u] = dfn[u] = ++tot;
int ch = 0;
for(int e = first[u]; e; e = nxt[e])
{
int v = go[e];
if(!dfn[v])
{
Tarjan(v, root);
low[u] = min(low[u], low[v]);
if(low[v] >= dfn[u] && u != root)
cut[u] = true;
if(u == root)
++ch;
}
else
{
low[u] = min(low[u], dfn[v]);
}
}
if(u == root && ch >= 2)
cut[u] = true;
}
区别:
1. 函数主体第二行:[stk.push(u);] vs. [int ch = 0;]
2. if之内,low[u] = min(low[u], low[v])之后:[无] vs. [判断割点、++ch]
3. else的条件:[!co[v]] vs. [无]
4. for循环之后:[染色] vs. [判断u == root时是不是割点]
因为SCC中有if(!co[v]),所以两个算法的low[]意义改变。
粗心记录:
1. SCC:if(!co[v])老是忘记!
2. 割点:low[u] = min(low[u], low[v])老是忘记!
再说一下求双连通分量(无向图)。
代码:
int vis[MAXM];
void Tarjan(int u)
{
dfn[u] = low[u] = ++tot;
stk.push(u);
for(int e = first[u]; e; e = nxt[e])
{
if(!vis[e])
{
vis[e] = vis[(e & 1) ? e + 1 : e - 1] = true;
int v = go[e];
if(!dfn[v])
{
Tarjan(v);
low[u] = min(low[u], low[v]);
}
else if(!co[v])
{
low[u] = min(low[u], dfn[v]);
}
}
}
if(low[u] == dfn[u])
{
co[u] = ++col;
while(stk.top() != u)
{
co[stk.top()] = col;
stk.pop();
}
stk.pop();
}
}
策略:对于已经访问的边e,其对偶边就不能访问了。